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Abstract
This paper presents McNetKAT, a scalable tool for verifying
probabilistic network programs. McNetKAT is based on a
new semantics for the guarded and history-free fragment
of Probabilistic NetKAT in terms of finite-state, absorbing
Markov chains. This view allows the semantics of all pro-
grams to be computed exactly, enabling construction of an
automatic verification tool. Domain-specific optimizations
and a parallelizing backend enable McNetKAT to analyze
networks with thousands of nodes, automatically reasoning
about general properties such as probabilistic program equiv-
alence and refinement, as well as networking properties such
as resilience to failures. We evaluate McNetKAT’s scalabil-
ity using real-world topologies, compare its performance
against state-of-the-art tools, and develop an extended case
study on a recently proposed data center network design.

CCSConcepts •Theory of computation→Automated
reasoning;Programsemantics; Randomwalks andMarkov
chains; • Networks → Network properties; • Software and
its engineering → Domain specific languages.
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1 Introduction
Networks are among the most complex and critical com-
puting systems used today. Researchers have long sought
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to develop automated techniques for modeling and analyz-
ing network behavior [51], but only over the last decade
has programming language methodology been brought to
bear on the problem [6, 7, 36], opening up new avenues
for reasoning about networks in a rigorous and principled
way [4, 14, 25, 27, 33]. Building on these initial advances,
researchers have begun to target more sophisticated net-
works that exhibit richer phenomena. In particular, there is
renewed interest in randomization as a tool for designing
protocols and modeling behaviors that arise in large-scale
systems—from uncertainty about the inputs, to expected
load, to likelihood of device and link failures.

Although programming languages for describing random-
ized networks exist [13, 17], support for automated reasoning
remains limited. Even basic properties require quantitative
reasoning in the probabilistic setting, and seemingly sim-
ple programs can generate complex distributions. Whereas
state-of-the-art tools can easily handle deterministic net-
works with hundreds of thousands of nodes, probabilistic
tools are currently orders of magnitude behind.
This paper presents McNetKAT, a new tool for reason-

ing about probabilistic network programs written in the
guarded and history-free fragment of Probabilistic NetKAT
(ProbNetKAT) [4, 13, 14, 46]. ProbNetKAT is an expressive
programming language based on Kleene Algebra with Tests,
capable of modeling a variety of probabilistic behaviors and
properties including randomized routing [30, 48], uncer-
tainty about demands [40], and failures [19]. The history-free
fragment restricts the language semantics to input-output be-
havior rather than tracking paths, and the guarded fragment
provides conditionals and while loops rather than union and
iteration operators. Although the fragment we consider is a
restriction of the full language, it is still expressive enough
to encode a wide range of practical networking models. Ex-
isting deterministic tools, such as Anteater [35], HSA [25],
and Veriflow [27], also use guarded and history-free models.
To enable automated reasoning, we first reformulate the

semantics of ProbNetKAT in terms of finite state Markov
chains. We introduce a big-step semantics that models pro-
grams as Markov chains that transition from input to out-
put in a single step, using an auxiliary small-step semantics
to compute the closed-form solution for the semantics of
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the iteration operator. We prove that the Markov chain se-
mantics coincides with the domain-theoretic semantics for
ProbNetKAT developed in previous work [13, 46]. Our new
semantics also has a key benefit: the limiting distribution
of the resulting Markov chains can be computed exactly in
closed form, yielding a concise representation that can be
used as the basis for building a practical tool.

We have implemented McNetKAT in an OCaml prototype
that takes a ProbNetKAT program as input and produces a
stochastic matrix that models its semantics in a finite and
explicit form. McNetKAT uses the UMFPACK linear algebra
library as a back-end solver to efficiently compute limit-
ing distributions [8], and exploits algebraic properties to
automatically parallelize the computation across multiple
machines. To facilitate comparisons with other tools, we also
developed a back-end based on PRISM [31].
To evaluate the scalability of McNetKAT, we conducted

experiments on realistic topologies, routing schemes, and
properties. Our results show that McNetKAT scales to net-
works with thousands of switches, and performs orders
of magnitude better than a state-of-the-art tool based on
general-purpose symbolic inference [17, 18]. We also used
McNetKAT to carry out a case study of the resilience of a
fault-tolerant data center design proposed by Liu et al. [34].

Contributions and outline. The central contribution of
this paper is the development of a scalable probabilistic net-
work verification tool. We develop a new, tractable semantics
that is sound with respect to ProbNetKAT’s original denota-
tional model. We present a prototype implementation and
evaluate it on a variety of scenarios drawn from real-world
networks. In §2, we introduce ProbNetKAT using a running
example. In §3, we present a semantics based on finite stochas-
tic matrices and show that it fully characterizes the behavior
of ProbNetKAT programs (Theorem 3.1). In §4, we show how
to compute the matrix associated with iteration in closed
form. In §5, we discuss our implementation, including sym-
bolic data structures and optimizations that are needed to
handle the large state space efficiently. In §6, we evaluate the
scalability of McNetKAT on a common data center design
and compare its performance against state-of-the-art proba-
bilistic tools. In §7, we present a case study using McNetKAT
to analyze resilience in the presence of link failures. We sur-
vey related work in §8 and conclude in §9. We defer proofs
to the appendix.

2 Overview
This section introduces a running example that illustrates
the main features of the ProbNetKAT language as well as
some quantitative network properties that arise in practice.

Background on ProbNetKAT. Consider the network in Fig-
ure 1, which connects a source to a destination in a topology
with three switches. We will first introduce a program that

Switch 1 Switch 2

Switch 3

Source Destination

1 2
3

1
3

2

1 2

Figure 1. Network topology for running example.

forwards packets from the source to the destination, and
then verify that it correctly implements the desired behavior.
Next, we will show how to enrich our program to model
the possibility of link failures, and develop a fault-tolerant
forwarding scheme that automatically routes around fail-
ures. Using a quantitative version of program refinement,
we will show that the fault-tolerant program is indeed more
resilient than the initial program. Finally, we will show how
to compute the expected degree of resilience analytically.
To a first approximation, a ProbNetKAT program can be

thought of as a randomized function that maps input packets
to sets of output packets. Packets are modeled as records,
with fields for standard headers—such as the source (src)
and destination (dst) addresses—as well as two fields switch
(sw) and port (pt) encoding the current location of the packet.
ProbNetKAT provides several primitives for manipulating
packets: a modification f �n returns the input packet with
field f updated to n, while a test f =n returns either the input
packet unmodified if the test succeeds, or the empty set if
the test fails. The primitives skip and drop behave like a test
that always succeeds and fails, respectively. In the guarded
fragment of the language, programs can be composed se-
quentially (p ;q), using conditionals (if p then q1 else q2),
while loops (while p do q), or probabilistic choice (p ⊕ q).

Although ProbNetKATprograms can be freely constructed
by composing primitive operations, a typical network model
is expressed using two programs: a forwarding program
(sometimes called a policy) and a link program (sometimes
called a topology). The forwarding program describes how
packets are transformed locally by the switches at each hop.
In our running example, to route packets from the source
to the destination, switches 1 and 2 can simply forward all
incoming packets out on port 2 by modifying the port field
(pt). This program can be encoded in ProbNetKAT by per-
forming a case analysis on the location of the input packet,
and then setting the port field to 2:

p ≜ if sw=1 then pt�2 else
if sw=2 then pt�2 else drop

The final drop at the end of this program encodes the policy
for switch 3, which is unreachable.
We can model the topology as a cascade of conditionals

that match packets at the end of each link and update their
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locations to the link’s destination:

t ≜ if sw=1 ; pt=2 then sw�2 ; pt�1 else . . .

To build the overall network model, we first define predicates
for the ingress and egress locations,

in ≜ sw=1 ; pt=1 out ≜ sw=2 ; pt=2

and then combine the forwarding policy p with the topology
t . More specifically, a packet traversing the network starts
at an ingress and is repeatedly processed by switches and
links until it reaches an egress:

M(p, t) ≜ in ;p ;while ¬out do (t ;p)

We can now state and prove properties about the network
by reasoning about this model. For instance, the following
equivalence states that p forwards all packets to the destina-
tion:

M(p, t) ≡ in ; sw�2 ; pt�2

The program on the right can be regarded as an ideal speci-
fication that “teleports” each packet to its destination. Such
equations were also used in previous work to reason about
properties such as waypointing, reachability, isolation, and
loop freedom [4, 14].

Probabilistic reasoning. Real-world networks often exhib-
it nondeterministic behaviors such as fault tolerant routing
schemes to handle unexpected failures [34] and random-
ized algorithms to balance load across multiple paths [30].
Verifying that networks behave as expected in these more
complicated scenarios requires a form of probabilistic rea-
soning, but most state-of-the-art network verification tools
model only deterministic behaviors [14, 25, 27].
To illustrate, suppose we want to extend our example

with link failures. Most modern switches execute low-level
protocols such as Bidirectional Forwarding Detection (BFD)
that compute real-time health information about the link
connected to each physical port [5]. We can enrich our model
so that each switch has a boolean flag upi that indicates
whether the link connected to the switch at port i is up. Then,
we can adjust the forwarding logic to use backup paths when
the link is down: for switch 1,

p̂1 ≜ if up2=1 then pt�2 else
if up2=0 then pt�3 else drop

and similarly for switches 2 and 3. As before, we can package
the forwarding logic for all switches into a single program:

p̂ ≜ if sw=1 then p̂1 else if sw=2 then p̂2 else p̂3

Next, we update the encoding of our topology to faithfully
model link failures. Links can fail for a wide variety of rea-
sons, including human errors, fiber cuts, and hardware faults.
A natural way to model such failures is with a probabilis-
tic model—i.e., with a distribution that captures how often

certain links fail:

f0 ≜ up2�1 ; up3�1

f1 ≜ ⊕
{
f0 @ 1

2 , (up2�0 ; up3�1)@ 1
4 , (up2�1 ; up3�0)@ 1

4
}

f2 ≜ (up2�1 ⊕.8 up2�0) ;(up3�1 ⊕.8 up3�0)

Intuitively, in f0 no links fail, in f1 the links ℓ12 and ℓ13 fail
with probability 25% but at most one link fails, while in f2
the links fail independently with probability 20%. Using the
up flags, we can model a topology with possibly faulty links
like so:

t̂ ≜ if sw=1 ; pt=2 ; up2=1 then sw�2 ; pt�1 else . . .

Combining the policy, topology, and failure model yields a
model of the entire network:

M̂(p, t, f ) ≜ var up2�1 in
var up3�1 in
M((f ;p), t)

This refined model M̂ wraps our previous modelM with dec-
larations of the two local fields up2 and up3 and executes the
failure model (f ) at each hop before executing the programs
for the switch (p) and topology (t ).

Now we can analyze our resilient routing scheme p̂. As a
sanity check, we can verify that it delivers packets to their
destinations in the absence of failures. Formally, it behaves
like the program that teleports packets to their destinations:

M̂(p̂, t̂, f0) ≡ in ; sw�2 ; pt�2

More interestingly, p̂ is 1-resilient—i.e., it delivers packets
provided at most one link fails. Note that this property does
not hold for the original, naive routing scheme p:

M̂(p̂, t̂, f1) ≡ in ; sw�2 ; pt�2 . M̂(p, t̂, f1)

While p̂ is not fully resilient under failure model f2, which
allows two links to fail simultaneously, we can still show
that the refined routing scheme p̂ performs strictly better
than the naive scheme p by checking

M̂(p, t̂, f2) < M̂(p̂, t̂, f2)

where p < q intuitively means that q delivers packets with
higher probability than p.
Going a step further, we might want to compute more

general quantitative properties of the distributions generated
for a given program. For example, we might compute the
probability that each routing scheme delivers packets to the
destination under f2 (i.e., 80% for the naive scheme and 96%
for the resilient scheme), potentially valuable information to
help an Internet Service Provider (ISP) evaluate a network
design to check that it meets certain service-level agreements
(SLAs). With this motivation in mind, we aim to build a
scalable tool that can carry out automated reasoning on
probabilistic network programs expressed in ProbNetKAT.

3
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3 ProbNetKAT Syntax and Semantics
This section reviews the syntax of ProbNetKAT and presents
a new semantics based on finite state Markov chains.

Preliminaries. A packet π is a record mapping a finite set
of fields f1, f2, . . . , fk to bounded integers n. As we saw in the
previous section, fields can include standard header fields
such as source (src) and destination (dst) addresses, as well
as logical fields for modeling the current location of the
packet in the network or variables such as upi . These logical
fields are not present in a physical network packet, but they
can track auxiliary information for the purposes of verifi-
cation. We write π .f to denote the value of field f of π and
π [f :=n] for the packet obtained from π by updating field f
to hold n. We let Pk denote the (finite) set of all packets.

Syntax. ProbNetKAT terms can be divided into two classes:
predicates (t,u, . . .) and programs (p,q, . . .). Primitive pred-
icates include tests (f =n) and the Boolean constants false
(drop) and true (skip). Compound predicates are formed us-
ing the usual Boolean connectives: disjunction (t & u), con-
junction (t ;u), and negation (¬t ). Primitive programs include
predicates (t ) and assignments (f �n). The original version
of the language also provides a dup primitive, which logs
the current state of the packet, but the history-free fragment
omits this operation. Compound programs can be formed
using parallel composition (p & q), sequential composition
(p ;q), and iteration (p∗). In addition, the probabilistic choice
operator p ⊕r q executes p with probability r and q with
probability 1 − r , where r is rational, 0 ≤ r ≤ 1. We some-
times use an n-ary version and omit the r ’s: p1 ⊕ · · · ⊕ pn
executes a pi chosen uniformly at random. In addition to
these core constructs (summarized in Figure 2), many other
useful constructs can be derived. For example, mutable local
variables (e.g., upi , used to track link health in §2), can be
desugared into the language:

var f �n in p ≜ f �n ;p ; f �0

Here f is a field that is local to p. The final assignment f �0
sets the value of f to a canonical value, “erasing” it after the
field goes out of scope. We often use local variables to record
extra information for verification—e.g., recording whether
a packet traversed a given switch allows reasoning about
simple waypointing and isolation properties, even though
the history-free fragment of ProbNetKAT does not model
paths directly.

Guarded fragment. Conditionals and while loops can be
encoded using union and iteration:

if t then p else q ≜ t ;p & ¬t ;q
while t do p ≜ (t ;p)∗ ;¬t

Note that these constructs use the predicate t as a guard,
resolving the inherent nondeterminism in the union and
iteration operators. Our implementation handles programs

Naturals n ::= 0 | 1 | 2 | · · ·
Fields f ::= f1 | · · · | fk

Packets Pk ∋ π ::= {f1 = n1, . . . , fk = nk }
Probabilities r ∈ [0, 1] ∩ Q
Predicates t,u ::= drop False

| skip True
| f =n Test
| t & u Disjunction
| t ;u Conjunction
| ¬t Negation

Programs p,q ::= t Filter
| f �n Assignment
| p & q Union
| p ;q Sequence
| p ⊕r q Choice
| p∗ Iteration

Figure 2. ProbNetKAT Syntax.

in the guarded fragment of the language—i.e., with loops
and conditionals but without union and iteration—though
we will develop the theory in full generality here, to make
connections to previous work on ProbNetKAT clearer. We
believe this restriction is acceptable from a practical per-
spective, as the main purpose of union and iteration is to
encode forwarding tables and network-wide processing, and
the guarded variants can often perform the same task. A
notable exception is multicast, which cannot be expressed
in the guarded fragment.

Semantics. Previous work on ProbNetKAT [13] modeled
history-free programs as maps 2Pk → D(2Pk), whereD(2Pk)
denotes the set of probability distributions on 2Pk. This se-
mantics is useful for establishing fundamental properties of
the language, but we will need a more explicit representation
to build a practical verification tool. Since the set of packets
is finite, probability distributions over sets of packets are
discrete and can be characterized by a probability mass func-
tion, f : 2Pk → [0, 1] such that

∑
b⊆Pk f (b) = 1. It will be

convenient to view f as a stochastic vector of non-negative
entries that sum to 1.
A program, which maps inputs a to distributions over

outputs, can then be represented by a square matrix indexed
by Pk in which the stochastic vector corresponding to input
a appears as the a-th row. Thus, we can interpret a program
p as a matrix BJpK ∈ [0, 1]2Pk×2Pk indexed by packet sets,
where the matrix entry BJpKab gives the probability that
p produces output b ∈ 2Pk on input a ∈ 2Pk. The rows of
the matrix BJpK are stochastic vectors, each encoding the
distribution produced for an input set a; such a matrix is
called right-stochastic, or simply stochastic. We write S(2Pk)
for the set of right-stochastic matrices indexed by 2Pk.

4
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BJpK ∈ S(2Pk)

BJdropKab ≜ [b = ∅]
BJskipKab ≜ [a = b]

BJf =nKab ≜ [b = {π ∈ a | π . f = n}]

BJ¬tKab ≜ [b ⊆ a] · BJtKa,a−b
BJf �nKab ≜ [b = {π [f := n] | π ∈ a}]

BJp & qKab ≜
∑
c ,d

[c ∪ d = b] · BJpKa,c · BJqKa,d

BJp ;qK ≜BJpK · BJqK
BJp ⊕r qK ≜ r · BJpK + (1 − r ) · BJqK

BJp∗Kab ≜ lim
n→∞
BJp(n)Kab

Figure 3. ProbNetKAT Semantics. The notation BJpKab de-
notes the probability that p produces b on input a.

Figure 3 defines an interpretation of ProbNetKAT pro-
grams as stochastic matrices; the Iverson bracket [φ] is 1 if
φ is true, and 0 otherwise. Deterministic program primitives
are interpreted as {0, 1}-matrices—e.g., the program primi-
tive drop is interpreted as the following stochastic matrix:

BJdropK =


∅ b2 ... bn

∅ 1 0 · · · 0
...
...
...
. . .
...

an 1 0 · · · 0


a2
...
an

a1 = ∅

1

1

1 (1)

which assigns all probability mass to the ∅-column. Simi-
larly, skip is interpreted as the identity matrix. Sequential
composition can be interpreted as matrix product,

BJp ;qKab =
∑
c

BJpKac · BJqKcb = (BJpK · BJqK)ab

which reflects the intuitive semantics of composition: to
step from a to b in BJp ;qK, one must step from a to an
intermediate state c in BJpK, and then from c to b in BJqK.
As the picture in (1) suggests, a stochastic matrix B ∈

S(2Pk) can be viewed as a Markov chain (MC)—i.e., a proba-
bilistic transition system with state space 2Pk. The Bab entry
gives the probability that the system transitions from a to b.

Soundness. The matrix BJpK is equivalent to the denota-
tional semantics JpK defined in previous work [13].

Theorem 3.1 (Soundness). Let a,b ∈ 2Pk. The matrix BJpK
satisfies BJpKab = JpK(a)({b}).

Hence, checking program equivalence for p and q reduces
to checking equality of the matrices BJpK and BJqK.

Corollary 3.2. JpK = JqK if and only if BJpK = BJqK.

In particular, because the Markov chains are all finite state,
the transition matrices are finite dimensional with rational

⟨p∗,a,b⟩ ⟨skip & p ;p∗,a,b⟩ ⟨p ;p∗,a,b ∪ a⟩

⟨p∗,a′,b ∪ a⟩

1 1

BJpKa,a′
BJpKa,a ′

Figure 4. The small-step semantics is given by a Markov
chain with states ⟨program, input set, output accumulator⟩.
The three dashed arrows can be collapsed into the single
solid arrow, rendering the program component superfluous.

entries. Accordingly, program equivalence and other quan-
titative properties can be automatically verified provided
we can compute the matrices for given programs. This is
relatively straightforward for program constructs besides
BJp∗K, whose matrix is defined in terms of a limit. The next
section presents a closed-form definition of the stochastic
matrix for this operator.

4 Computing Stochastic Matrices
The semantics developed in the previous section can be
viewed as a “big-step” semantics in which a single step
models the execution of a program from input to output.
To compute the semantics of p∗, we will introduce a finer,
“small-step” chain in which a transition models one iteration
of the loop.
To build intuition, consider simulating p∗ using a transi-

tion system with states given by triples ⟨p,a,b⟩ in which p
is the program being executed, a is the set of (input) packets,
and b is an accumulator that collects the output packets gen-
erated so far. Tomodel the execution ofp∗ on inputa, we start
from the initial state ⟨p∗,a,∅⟩ and unroll p∗ one iteration
according to the characteristic equation p∗ ≡ skip & p ;p∗,
yielding the following transition:

⟨p∗,a,∅⟩ 1
−−−−−−−−−→ ⟨skip & p ;p∗,a,∅⟩

Next, we execute both skip and p ;p∗ on the input set and
take the union of their results. Executing skip yields the
input set as output, with probability 1:

⟨skip & p ;p∗,a,∅⟩ 1
−−−−−−−−−→ ⟨p ;p∗,a,a⟩

Executing p ;p∗, executes p and feeds its output into p∗:

∀a′ : ⟨p ;p∗,a,a⟩
BJpKa,a′
−−−−−−−−−→ ⟨p∗,a′,a⟩

At this point we are back to executing p∗, albeit with a differ-
ent input set a′ and some accumulated output packets. The
resulting Markov chain is shown in Figure 4.

Note that as the first two steps of the chain are determin-
istic, we can simplify the transition system by collapsing all
three steps into one, as illustrated in Figure 4. The program
component can then be dropped, as it now remains constant

5
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across transitions. Hence, we work with a Markov chain over
the state space 2Pk × 2Pk, defined formally as follows:

SJpK ∈ S(2Pk × 2Pk)
SJpK(a,b),(a′,b′) ≜ [b ′ = b ∪ a] · BJpKa,a′ .

We can verify that the matrix SJpK defines a Markov chain.

Lemma 4.1. SJpK is stochastic.

Next, we show that each step in SJpK models an iteration
of p∗. Formally, the (n + 1)-step of SJpK is equivalent to the
big-step behavior of the n-th unrolling of p∗.

Proposition 4.2. BJp(n)Ka,b =
∑

a′ SJpKn+1
(a,∅),(a′,b)

Direct induction on the number of stepsn ≥ 0 fails because
the hypothesis is too weak. We generalize from start states
with empty accumulator to arbitrary start states.

Lemma 4.3. Let p be program. Then for all n ∈ N and
a,b,b ′ ⊆ Pk, we have∑

a′
[b ′ = a′ ∪ b] · BJp(n)Ka,a′ =

∑
a′
SJpKn+1

(a,b),(a′,b′).

Proposition 4.2 then follows from Lemma 4.3 with b = ∅.
Intuitively, the long-run behavior of SJpK approaches the

big-step behavior of p∗: letting (an,bn) denote the random
state of the Markov chain SJpK after taking n steps starting
from (a,∅), the distribution of bn for n → ∞ is precisely
the distribution of outputs generated by p∗ on input a (by
Proposition 4.2 and the definition of BJp∗K).

Closed form. The limiting behavior of finite state Markov
chains has been well studied in the literature (e.g., see Ke-
meny and Snell [26]). For so-called absorbing Markov chains,
the limit distribution can be computed exactly. A state s of
a Markov chain T is absorbing if it transitions to itself with
probability 1,

s 1 (formally: Ts ,s ′ = [s = s ′])

and a Markov chain T ∈ S(S) is absorbing if each state can
reach an absorbing state:

∀s ∈ S . ∃s ′ ∈ S,n ≥ 0. T n
s ,s ′ > 0 and Ts ′,s ′ = 1

The non-absorbing states of an absorbing MC are called
transient. Assume T is absorbing with nt transient states
and na absorbing states. After reordering the states so that
absorbing states appear first, T has the form

T =

[
I 0
R Q

]
where I is the na ×na identity matrix, R is an nt ×na matrix
giving the probabilities of transient states transitioning to
absorbing states, and Q is an nt × nt matrix specifying the
probabilities of transitions between transient states. Since
absorbing states never transition to transient states by defi-
nition, the upper right corner contains a na ×nt zero matrix.

From any start state, a finite state absorbing MC always
ends up in an absorbing state eventually, i.e. the limit T∞ ≜
limn→∞T

n exists and has the form

T∞ =

[
I 0
A 0

]
where the nt ×na matrix A contains the so-called absorption
probabilities. This matrix satisfies the following equation:

A = (I +Q +Q2 + . . . )R

Intuitively, to transition from a transient state to an absorb-
ing state, the MC can take an arbitrary number of steps
between transient states before taking a single—and final—
step into an absorbing state. The infinite sum X ≜

∑
n≥0Q

n

satisfies X = I +QX , and solving for X yields

X = (I −Q)−1 and A = (I −Q)−1R. (2)

(We refer the reader to Kemeny and Snell [26] for the proof
that the inverse exists.)
Before we apply this theory to the small-step semantics
SJ−K, it will be useful to introduce some MC-specific nota-
tion. Let T be an MC. We write s

T
−→n s ′ if s can reach s ′ in

precisely n steps, i.e. ifT n
s ,s ′ > 0; and we write s

T
−→ s ′ if s can

reach s ′ in some number of steps, i.e. if T n
s ,s ′ > 0 for some

n ≥ 0. Two states are said to communicate, denoted s
T
←→ s ′,

if s
T
−→ s ′ and s ′

T
−→ s . The relation

T
←→ is an equivalence

relation, and its equivalence classes are called communica-
tion classes. A communication class is absorbing if it cannot
reach any states outside the class. Let Pr[s

T
−→n s ′] denote the

probabilityT n
s ,s ′ . For the rest of the section, we fix a program

p and abbreviate BJpK as B and SJpK as S . We also define
saturated states, those where the accumulator has stabilized.

Definition 4.4. A state (a,b) of S is called saturated if b has
reached its final value, i.e. if (a,b)

S
−→ (a′,b ′) implies b ′ = b.

After reaching a saturated state, the output of p∗ is fully
determined. The probability of ending up in a saturated state
with accumulator b, starting from an initial state (a,∅), is

lim
n→∞

∑
a′

Sn
(a,∅),(a′,b)

and, indeed, this is the probability that p∗ outputs b on in-
put a by Proposition 4.2. Unfortunately, we cannot directly
compute this limit since saturated states are not necessarily
absorbing. To see this, consider p∗ = (f �0 ⊕1/2 f �1)∗ over
a single {0, 1}-valued field f . Then S has the form

0, 0 0, {0, 1}

0,∅

1, 0 1, {0, 1}

6
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where all edges are implicitly labeled with 1
2 , and 0 and 1

denote the packets with f set to 0 and 1 respectively. We omit
states not reachable from (0,∅). The right-most states are
saturated, but they communicate and are thus not absorbing.

To align saturated and absorbing states, we can perform a
quotient of this Markov chain by collapsing the communi-
cating states. We define an auxiliary matrix,

U(a,b),(a′,b′) ≜ [b
′ = b] ·

{
[a′ = ∅] if (a,b) is saturated
[a′ = a] else

which sends a saturated state (a,b) to a canonical saturated
state (∅,b) and acts as the identity on all other states. In our
example, the modified chain SU is as follows:

0, 0 0, {0, 1}

0,∅ ∅, {0, 1}

1, 0 1, {0, 1}

and indeed is absorbing, as desired.

Lemma 4.5. S , U , and SU are monotone in the sense that:
(a,b)

S
−→ (a′,b ′) implies b ⊆ b ′ (and similarly forU and SU ).

Proof. By definition (S andU ) and by composition (SU ). □

Next, we show that SU is an absorbing MC:

Proposition 4.6. Let n ≥ 1.
1. (SU )n = SnU
2. SU is an absorbing MC with absorbing states {(∅,b)}.

Arranging the states (a,b) in lexicographically ascending
order according to ⊆ and letting n = |2Pk |, it then follows
from Proposition 4.6.2 that SU has the form

SU =

[
In 0
R Q

]
where, for a , ∅, we have

(SU )(a,b),(a′,b′) =
[
R Q

]
(a,b),(a′,b′) .

Moreover, SU converges and its limit is given by

(SU )∞ ≜

[
In 0

(I −Q)−1R 0

]
= lim

n→∞
(SU )n . (3)

Putting together the pieces, we can use the modified Markov
chain SU to compute the limit of S .

Theorem 4.7 (Closed Form). Let a,b,b ′ ⊆ Pk. Then

lim
n→∞

∑
a′

Sn
(a,b),(a′,b′) = (SU )

∞
(a,b),(∅,b′).

The limit exists and can be computed exactly, in closed-form.

5 Implementation
We have implemented McNetKAT as an embedded DSL in
OCaml in roughly 10KLoC. The frontend provides functions
for defining and manipulating ProbNetKAT programs and
for generating such programs automatically from network
topologies encoded using Graphviz. These programs can
then be analyzed by one of two backends: the native back-
end (PNK), which compiles programs to (symbolically rep-
resented) stochastic matrices; or the PRISM-based backend
(PPNK), which emits inputs for the state-of-the-art proba-
bilistic model checker PRISM [32].

Pragmatic restrictions. Although our semantics developed
in §3 and §4 theoretically supports computations on sets
of packets, a direct implementation would be prohibitively
expensive—the matrices are indexed by the powerset 2Pk of
the universe of all possible packets! To obtain a practical
analysis tool, we restrict the state space to single packets. At
the level of syntax, we restrict to the guarded fragment of
ProbNetKAT, i.e. to programs with conditionals and while
loops, but without union and iteration. This ensures that no
proper packet sets are ever generated, thus allowing us to
work over an exponentially smaller state space. While this
restriction does rule out some uses of ProbNetKAT—most
notably, modeling multicast—we did not find this to be a
serious limitation because multicast is relatively uncommon
in probabilistic networking. If needed, multicast can often
be modeled using multiple unicast programs.

5.1 Native Backend
The native backend compiles a program to a symbolic repre-
sentation of its big step matrix. The translation, illustrated in
Figure 5, proceeds as follows. First, we translate atomic pro-
grams to Forwarding Decision Diagrams (FDDs), a symbolic
data structure based on Binary Decision Diagrams (BDDs)
that encodes sparse matrices compactly [45]. Second, we
translate composite programs by first translating each sub-
program to an FDD and then merging the results using stan-
dard BDD algorithms. Loops require special treatment: we (i)
convert the FDD for the body of the loop to a sparse stochas-
tic matrix, (ii) compute the semantics of the loop by using an
optimized sparse linear solver [8] to solve the system from
§4, and finally (iii) convert the resulting matrix back to an
FDD. We use exact rational arithmetic in the frontend and
FDD-backend to preempt concerns about numerical preci-
sion, but trust the linear algebra solver UMFPACK (based on
64 bit floats) to provide accurate solutions.1 Our implemen-
tation relies on several optimizations; we detail two of the
more interesting ones below.

Probabilistic FDDs. Binary Decision Diagrams [1] and vari-
ants thereof [15] have long been used in verification and

1UMFPACK is a mature library powering widely-used scientific computing
packages such as MATLAB and SciPy.
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if pt=1 then

pt�2 ⊕0.5 pt�3
else if pt=2 then

pt�1
else if pt=3 then

pt�1
else

drop
pt�2 ⊕0.5 pt�3 pt�1 drop

pt=3

pt=2

pt=1



∅ pt=1 pt=2 pt=3 pt=∗

∅ 1
pt=1 1

2
1
2

pt=2 1
pt=3 1
pt=∗ 1


Program Probabilistic FDD Sparse matrix

Compile Convert
Solve

Figure 5. Implementation using FDDs and a sparse linear algebra solver.

model checking to represent large state spaces compactly. A
variant called Forwarding Decision Diagrams (FDDs) [45]
was previously developed specifically for the networking
domain, but only supported deterministic behavior. In this
work, we extended FDDs to probabilistic FDDs. A probabilis-
tic FDD is a rooted directed acyclic graph that can be un-
derstood as a control-flow graph. Interior nodes test packet
fields and have outgoing true- and false- branches, which
we visualize by solid lines and dashed lines in Figure 5. Leaf
nodes contain distributions over actions, where an action
is either a set of modifications or a special action drop. To
interpret an FDD, we start at the root node with an initial
packet and traverse the graph as dictated by the tests until a
leaf node is reached. Then, we apply each action in the leaf
node to the packet. Thus, an FDD represents a function of
type Pk→ D(Pk +∅), or equivalently, a stochastic matrix
over the state space Pk +∅ where the ∅-row puts all mass
on ∅ by convention. Like BDDs, FDDs respect a total order
on tests and contain no isomorphic subgraphs or redundant
tests, which enables representing sparse matrices compactly.

Dynamic domain reduction. As Figure 5 shows, we do
not have to represent the state space Pk +∅ explicitly even
when converting into sparse matrix form. In the example, the
state space is represented by symbolic packets pt = 1, pt = 2,
pt = 3, and pt = ∗, each representing an equivalence class
of packets. For example, pt = 1 can represent all packets
π satisfying π .pt = 1, because the program treats all such
packets in the same way. The packet pt = ∗ represents the
set {π | π .pt < {1, 2, 3}}. The symbol ∗ can be thought
of as a wildcard that ranges over all values not explicitly
represented by other symbolic packets. The symbolic packets
are chosen dynamically when converting an FDD to a matrix
by traversing the FDD and determining the set of values
appearing in each field, either in a test or a modification.
Since FDDs never contain redundant tests or modifications,
these sets are typically of manageable size.

5.2 PRISM backend
PRISM is a mature probabilistic model checker that has been
actively developed and improved for the last two decades.
The tool takes as input a Markov chain model specified sym-
bolically in PRISM’s input language and a property specified
using a logic such as Probabilistic CTL, and outputs the
probability that the model satisfies the property. PRISM sup-
ports various types of models including finite state Markov
chains, and can thus be used as a backend for reasoning about
ProbNetKAT programs using our results from §3 and §4. Ac-
cordingly, we implemented a second backend that translates
ProbNetKAT to PRISM programs. While the native backend
computes the big step semantics of a program—a costly op-
eration that may involve solving linear systems to compute
fixed points—the PRISM backend is a purely syntactic trans-
formation; the heavy lifting is done by PRISM itself.
A PRISM program consists of a set of bounded variables

together with a set of transition rules of the form

ϕ → p1 · u1 + · · · + pk · uk

where ϕ is a Boolean predicate over the variables, the pi
are probabilities that must sum up to one, and the ui are
sequences of variable updates. The predicates are required
to be mutually exclusive and exhaustive. Such a program
encodes a Markov chain whose state space is given by the
finite set of variable assignments and whose transitions are
dictated by the rules: if ϕ is satisfied under the current as-
signment σ and σi is obtained from σ by performing update
ui , then the probability of a transition from σ to σi is pi .

It is easy to see that any PRISM program can be expressed
in ProbNetKAT, but the reverse direction is slightly tricky:
it requires the introduction of an additional variable akin to
a program counter to emulate ProbNetKAT’s control flow
primitives such as loops and sequences. As an additional
challenge, we must be economical in our allocation of the
program counter, since the performance of model checking
is very sensitive to the size of the state space.

We address this challenge in three steps. First, we translate
the ProbNetKAT program to a finite state machine using a

8



Scalable Verification of Probabilistic Networks PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

s1 s2 s3 s4 s5 s6 s7 s8

Figure 6. A FatTree topology with p = 4.

Thompson-style construction [47]. Each edge is labeled with
a predicate ϕ, a probability pi , and an update ui , subject to
the following well-formedness conditions:

1. For each state, the predicates on its outgoing edges
form a partition.

2. For each state and predicate, the probabilities of all
outgoing edges guarded by that predicate sum to one.

Intuitively, the state machine encodes the control-flow graph.
This intuition serves as the inspiration for the next transla-

tion step, which collapses each basic block of the graph into
a single state. This step is crucial for reducing the state space,
since the state space of the initial automaton is linear in the
size of the program. Finally, we obtain a PRISM program
from the automaton as follows: for each state s with adjacent

predicate ϕ and ϕ-guarded outgoing edges s
ϕ/pi /ui
−−−−−−→ ti for

1 ≤ i ≤ k , produce a PRISM rule

(pc=s ∧ ϕ) → p1 · (u1 ;pc�t1) + · · · + pk · (uk ;pc�tk ).

The well-formedness conditions of the state machine guar-
antee that the resulting program is a valid PRISM program.
With some care, the entire translation can be implemented
in linear time. Indeed, McNetKAT translates all programs in
our evaluation to PRISM in under a second.

6 Evaluation
To evaluate McNetKAT we conducted experiments on sev-
eral benchmarks including a family of real-world data center
topologies and a synthetic benchmark drawn from the liter-
ature [17]. We evaluated McNetKAT’s scalability, character-
ized the effect of optimizations, and compared performance
against other state-of-the-art tools. All McNetKAT running
times we report refer to the time needed to compile programs
to FDDs; the cost of comparing FDDs for equivalence and
ordering, or of computing statistics of the encoded distri-
butions, is negligible. All experiments were performed on
machines with 16-core, 2.6 GHz Intel Xeon E5-2650 proces-
sors with 64 GB of memory.

Scalability on FatTree topologies. We first measured the
scalability of McNetKAT by using it to compute network
models for a series of FatTree topologies of increasing size.
FatTrees [2] (see also Figure 6) are multi-level, multi-rooted
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Figure 7. Scalability on a family of data center topologies.

trees that are widely used as topologies in modern data cen-
ters. FatTrees can be specified in terms of a parameter p
corresponding to the number of ports on each switch. A
p-ary FatTree connects 1

4p
3 servers using 5

4p
2 switches. To

route packets, we used a form of Equal-Cost Multipath Rout-
ing (ECMP) that randomly maps traffic flows onto shortest
paths. We measured the time needed to construct the sto-
chastic matrix representation of the program on a single
machine using two backends (native and PRISM) and under
two failure models (no failures and independent failures with
probability 1/1000).
Figure 7 depicts the results, several of which are worth

discussing. First, the native backend scales quite well: in the
absence of failures (f = 0), it scales to a network with 5000
switches in approximately 10 minutes. This result shows that
McNetKAT is able to handle networks of realistic size. Sec-
ond, the native backend consistently outperforms the PRISM
backend. We conjecture that the native backend is able to
exploit algebraic properties of the ProbNetKAT program to
better parallelize the job. Third, performance degrades in the
presence of failures. This is to be expected—failures lead to
more complex probability distributions which are nontrivial
to represent and manipulate.

Parallel speedup. One of the contributors to McNetKAT’s
good performance is its ability to parallelize the computation
of stochastic matrices across multiple cores in a machine,
or even across machines in a cluster. Intuitively, because a
network is a large collection of mostly independent devices,
it is possible to model its global behavior by first modeling
the behavior of each device in isolation, and then combining
the results to obtain a network-wide model. In addition to
speeding up the computation, this approach can also reduce
memory usage, often a bottleneck on large inputs.
To facilitate parallelization, we added an n-ary disjoint

branching construct to ProbNetKAT:
case sw=1 then p1 else
case sw=2 then p2 else
. . .

case sw=n then pn

9
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Figure 8. Speedup due to parallelization.

Semantically, this construct is equivalent to a cascade of
conditionals; but the native backend compiles it in parallel
using a map-reduce-style strategy, using one process per
core by default.
To evaluate the impact of parallelization, we compiled

two representative FatTree models (p = 14 and p = 16)
using ECMP routing on an increasing number of cores. With
m cores, we used one master machine together with r =
⌈m/16 − 1⌉ remote machines, addingmachines one by one as
needed to obtain more physical cores. The results are shown
in Figure 8. We see near linear speedup on a single machine,
cutting execution time by more than an order of magnitude
on our 16-core test machine. Beyond a single machine, the
speedup depends on the complexity of the submodels for
each switch—the longer it takes to generate the matrix for
each switch, the higher the speedup. For example, with a
p = 16 FatTree, we obtained a 30x speedup using 40 cores
across 3 machines.

Comparison with other tools. Bayonet [17] is a state-of-
the-art tool for analyzing probabilistic networks. Whereas
McNetKAT has a native backend tailored to the networking
domain and a backend based on a probabilistic model checker,
Bayonet programs are translated to a general-purpose prob-
abilistic language which is then analyzed by the symbolic in-
ference engine PSI [18]. Bayonet’s approach is more general,
as it can model queues, state, and multi-packet interactions
under an asynchronous scheduling model. It also supports
Bayesian inference and parameter synthesis. Moreover, Bay-
onet is fully symbolic whereas McNetKAT uses a numerical
linear algebra solver [8] (based on floating point arithmetic)
to compute limits.
To evaluate how the performance of these approaches

compares, we reproduced an experiment from the Bayonet
paper that analyzes the reliability of a simple routing scheme
in a family of “chain” topologies indexed by k , as shown in
Figure 9.

For k = 1, the network consists of four switches organized
into a diamond, with a single link that fails with probability

H1 S0

S1

S2

S3 S4k

S4k+1

S4k+2

S4k+3 H2

pfail pfail

Figure 9. Chain topology
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Figure 10. Scalability on chain topology.

pfail = 1/1000. For k > 1, the network consists of k diamonds
linked together into a chain as shown in Figure 9. Within
each diamond, switch S0 forwards packets with equal proba-
bility to switches S1 and S2, which in turn forward to switch
S3. However, S2 drops the packet if the link to S3 fails. We
analyze the probability that a packet originating at H1 is
successfully delivered to H2. Our implementation does not
exploit the regularity of these topologies.
Figure 10 gives the running time for several tools on

this benchmark: Bayonet, hand-written PRISM, ProbNetKAT
with the PRISM backend (PPNK), and ProbNetKAT with the
native backend (PNK). Further, we ran the PRISM tools in
exact and approximate mode, and we ran the ProbNetKAT
backend on a single machine and on the cluster. Note that
both axes in the plot are log-scaled.
We see that Bayonet scales to 32 switches in about 25

minutes, before hitting the one hour time limit and 64 GB
memory limit at 48 switches. ProbNetKAT answers the same
query for 2048 switches in under 10 seconds and scales to
over 65000 switches in about 50 minutes on a single core,
or just 2.5 minutes using a cluster of 24 machines. PRISM
scales similarly to ProbNetKAT, and performs best using the
hand-written model in approximate mode.
Overall, this experiment shows that for basic network

verification tasks, ProbNetKAT’s domain-specific backend
based on specialized data structures and an optimized linear-
algebra library [8] can outperform an approach based on a
general-purpose solver.
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Figure 11. (a) AB FatTree topology with p = 4. (b) Evaluating k-resilience. (c) Comparing schemes under k failures.

7 Case Study: Data Center Fault-Tolerance
In this section, we go beyond benchmarks and present a case
study that illustrates the utility of McNetKAT for probabilis-
tic reasoning. Specifically, we model the F10 [34] data center
design in ProbNetKAT and verify its key properties.

Data center resilience. An influential measurement study
by Gill et al. [19] showed that data centers experience fre-
quent failures, which have a major impact on application
performance. To address this challenge, a number of data cen-
ter designs have been proposed that aim to simultaneously
achieve high throughput, low latency, and fault tolerance.

F10 topology. F10 uses a novel topology called an AB Fat-
Tree, see Figure 11(a), that enhances a traditional FatTree [2]
with additional backup paths that can be used when fail-
ures occur. To illustrate, consider routing from s7 to s1 in
Figure 11(a) along one of the shortest paths (in thick black).
After reaching the core switch C in a standard FatTree (re-
call Figure 6), if the aggregation switch on the downward
path failed, we would need to take a 5-hop detour (shown
in red) that goes down to a different edge switch, up to a
different core switch, and finally down to s1. In contrast, an
AB FatTree [34] modifies the wiring of the aggregation later
to provide shorter detours—e.g., a 3-hop detour (shown in
blue) for the previous scenario.

F10 routing. F10’s routing scheme uses three strategies to
re-route packets after a failure occurs. If a link on the current
path fails and an equal-cost path exists, the switch simply
re-routes along that path. This approach is also known as
equal-cost multi-path routing (ECMP). If no shortest path
exist, it uses a 3-hop detour if one is available, and otherwise
falls back to a 5-hop detour if necessary.
We implemented this routing scheme in ProbNetKAT in

several steps. The first, F100, approximates the hashing be-
havior of ECMP by randomly selecting a port along one of
the shortest paths to the destination. The second, F103, im-
proves the resilience of F100 by augmenting it with 3-hop
re-routing—e.g., consider the blue path in Figure 11(a). We
find a port on C that connects to a different aggregation
switch A′ and forward the packet to A′. If there are multiple

such ports which have not failed, we choose one uniformly
at random. The third, F103,5, attempts 5-hop re-routing in
cases where F103 is unable to find a port on C whose adja-
cent link is up—e.g., consider the red path in Figure 11(a).
The 5-hop rerouting strategy requires a flag to distinguish
packets taking a detour from regular packets.

F10 network and failure model. We model the network
as discussed in §2, focusing on packets destined to switch 1:

M(p) ≜ in ;do (p ; t) while (¬sw=1)
McNetKAT automatically generates the topology program
t from a Graphviz description. The ingress predicate in is
a disjunction of switch-port tests over all ingress locations.
Adding the failure model and some setup code to declare
local variables tracking the health of individual links yields
the complete network model:

M̂(p, f ) ≜ var up1�1 in . . . var upd�1 in M(f ;p)
Here, d is the maximum degree of a topology node. The
entire model measures about 750 lines of ProbNetKAT code.
To evaluate the effect of different kinds of failures, we

define a family of failure models fk indexed by the maximum
number of failures k ∈ N∪ {∞} that may occur, where links
fail otherwise independently with probability pr ; we leave
pr implicit. To simplify the analysis, we focus on failures
occurring on downward paths (note that F100 is able to route
around failures on the upward path, unless the topology
becomes disconnected).

Verifying refinement. Having implemented F10 as a series
of three refinements, we would expect the probability of
packet delivery to increase in each refinement, but not to
achieve perfect delivery in an unbounded failure model f∞.
Formally, we should have

drop < M̂(F100, f∞) < M̂(F103, f∞)

< M̂(F103,5, f∞) < teleport

where teleport moves the packet directly to its destination,
and p < q means the probability assigned to every input-
output pair by q is greater than the probability assigned by p.
We confirmed that these inequalities hold using McNetKAT.
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Figure 12. Case study results (k = ∞): (a) Probability of delivery vs. link-failure probability; (b) Increased path length due to
resilience (pr = 1/4); (c) Expected hop-count conditioned on delivery.

Verifying k-resilience. Resilience is the key property sat-
isfied by F10. By using McNetKAT, we were able to auto-
matically verify that F10 is resilient to up to three failures
in the AB FatTree Figure 11(a). To establish this property,
we increased the parameter k in our failure model fk while
checking equivalence with teleportation (i.e., perfect deliv-
ery), as shown in Figure 11(b). The simplest scheme F100
drops packets when a failure occurs on the downward path,
so it is 0-resilient. The F103 scheme routes around failures
when a suitable aggregation switch is available, hence it is
2-resilient. Finally, the F103,5 scheme routes around failures
as long as any aggregation switch is reachable, hence it is
3-resilient. If the schemes are not equivalent to teleport, we
can still compare the relative resilience of the schemes using
the refinement order, as shown in Figure 11(c). Our imple-
mentation also enables precise, quantitative comparisons.
For example, Figure 12(a) considers a failure model in which
an unbounded number of failures can occur. We find that
F100’s delivery probability dips significantly as the failure
probability increases, while both F103 and F103,5 continue to
ensure high delivery probability by routing around failures.

Analyzing path stretch. Routing schemes based on de-
tours achieve a higher degree of resilience at the cost of
increasing the lengths of forwarding paths. We can quan-
tify this increase by augmenting our model with a counter
that is incremented at each hop and analyzing the expected
path length. Figure 12(b) shows the cumulative distribution
function of latency as the fraction of traffic delivered within
a given hop count. On AB FatTree, F100 delivers ≈80% of
the traffic in 4 hops, since the maximum length of a short-
est path from any edge switch to s1 is 4 and F100 does not
attempt to recover from failures. F103 and F103,5 deliver the
same amount of traffic when limited to at most 4 hops, but
they can deliver significantly more traffic using 2 additional
hops by using 3-hop and 5-hop paths to route around fail-
ures. F103 also delivers more traffic with 8 hops—these are
the cases when F103 performs 3-hop re-routing twice for a

single packet as it encountered failure twice. We can also
show that on a standard FatTree, F103,5 failures have a higher
impact on latency. Intuitively, the topology does not support
3-hop re-routing. This finding supports a key claim of F10:
the topology and routing scheme should be co-designed to
avoid excessive path stretch. Finally, Figure 12(c) shows the
expected path length conditioned on delivery. As the failure
probability increases, the probability of delivery for packets
routed via the core layer decreases for F100. Thus, the distri-
bution of delivered packets shifts towards 2-hop paths via
an aggregation switch, so the expected hop-count decreases.

8 Related Work
Themost closely related system toMcNetKAT is Bayonet [17].
In contrast to the domain-specific approach followed in this
paper, Bayonet uses a general-purpose probabilistic program-
ming language and inference tool [18]. Such an approach,
which reuses existing techniques, is naturally appealing.
In addition, Bayonet is more expressive than McNetKAT:
it supports asynchronous scheduling, stateful transforma-
tions, and probabilistic inference, making it possible to model
richer phenomena, such as congestion due to packet-level
interactions in queues. Of course, the extra generality does
not come for free. Bayonet requires programmers to supply
an upper bound on loops as the implementation is not guar-
anteed to find a fixed point. As discussed in §5, McNetKAT
scales better than Bayonet on simple benchmarks. Another
issue is that writing a realistic scheduler appears challenging,
and one might also need to model host-level congestion con-
trol protocols to obtain accurate results. Currently Bayonet
programs use deterministic or uniform schedulers and model
only a few packets at a time [16].

Prior work on ProbNetKAT [46] gave a measure-theoretic
semantics and an implementation that approximated pro-
grams using sequences of monotonically improving esti-
mates. While these estimates were proven to converge in
the limit, [46] offered no guarantees about the convergence
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rate. In fact, there are examples where the approximations
do not converge after any finite number of steps, which is
obviously undesirable in a tool. The implementation only
scaled to 10s of switches. In contrast, this paper presents
a straightforward and implementable semantics; the imple-
mentation computes limits precisely in closed form, and it
scales to real-world networks with thousands of switches.
McNetKAT achieves this by restricting to the guarded and
history-free fragment of ProbNetKAT, sacrificing the ability
to reason about multicast and path-properties directly. In
practice this sacrifice seems well worth the payoff: multicast
is somewhat uncommon, and we can often reason about
path-properties by maintaining extra state in the packets. In
particular, McNetKAT can still model the examples studied
in previous work by Smolka et al. [46].
Our work is the latest in a long line of techniques using

Markov chains as a tool for representing and analyzing prob-
abilistic programs. For an early example, see the seminal
paper of Sharir et al. [43]. Markov chains are also used in
many probabilistic model checkers, such as PRISM [31].
Beyond networking applications, there are connections

to other work on verification of probabilistic programs. Di
Pierro, Hankin, and Wiklicky used probabilistic abstract in-
terpretation to statically analyze probabilistic λ-calculus [9];
their work was extended to a language pWhile , using a store
and program location state space similar to Sharir et al. [43].
However, they do not deal with infinite limiting behavior be-
yond stepwise iteration, and do not guarantee convergence.
Olejnik, Wicklicky, and Cheraghchi provided a probabilistic
compiler pwc for a variation of pWhile [38]; their optimiza-
tions could potentially be useful for McNetKAT. A recent
survey by Gordon et al. [21] shows how to give semantics
for probabilistic processes using stationary distributions of
Markov chains, and studies convergence. Similar to our ap-
proach, they use absorbing strongly connected components
to represent termination. Finally, probabilistic abstract inter-
pretation is also an active area of research [49]; it would be
interesting to explore applications to ProbNetKAT.

9 Conclusion
This paper presents a scalable tool for verifying probabilis-
tic networks based on a new semantics for the history-free
fragment of ProbNetKAT in terms of Markov chains. Natural
directions for future work include further optimization of
our implementation—e.g., using Bayesian networks to repre-
sent joint distributions compactly. We are also interested in
applying McNetKAT to other systems that implement algo-
rithms for randomized routing [30, 44], load balancing [11],
traffic monitoring [42], anonymity [10], and network neu-
trality [52], among others.
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Semantics JpK ∈ 2Pk → D(2Pk) (Discrete) Probability Monad D
JdropK(a) ≜ δ (∅)
JskipK(a) ≜ δ (a)

Jf =nK(a) ≜ δ ({π ∈ a | π . f = n})

Jf �nK(a) ≜ δ ({π [f :=n] | π ∈ a})
J¬tK(a) ≜ D(λb .a − b)(JtK(a))

Jp & qK(a) ≜ D(∪)(JpK(a) × JqK(a))
Jp ;qK(a) ≜ JqK†(JpK(a))

Jp ⊕r qK(a) ≜ r · JpK(a) + (1 − r ) · JqK(a)
Jp∗K(a) ≜

⊔
n∈N

Jp(n)K(a)

where p(0) ≜ skip, p(n+1) ≜ skip & p ;p(n)

Unit δ : X → D(X ) δ (x) ≜ δx

Bind −† : (X → D(Y )) → D(X ) → D(Y )
f †(µ)(A) ≜

∑
x ∈X f (x)(A) · µ(x)

Figure 13. ProbNetKAT semantics.

A ProbNetKAT Denotational Semantics
In the original ProbNetKAT language, programs manipulate sets of packet histories—non-empty, finite sequences of packets
modeling trajectories through the network [13, 46]. The resulting state space is uncountable and modeling the semantics
properly requires full-blown measure theory as some programs generate continuous distributions. In the history-free fragment,
programs manipulate sets of packets and the state space is finite, which makes the semantics considerably simpler.

Proposition A.1. Let L−M denote the semantics defined in Smolka et al. [46]. Then for all dup-free programs p and inputs a ∈ 2Pk,
we have JpK(a) = LpM(a), where we identify packets and histories of length one.

Throughout this paper, we can work in the discrete space 2Pk, i.e., the set of sets of packets. An outcome (denoted by
lowercase variables a,b, c, . . . ) is a set of packets and an event (denoted by uppercase variablesA,B,C, . . . ) is a set of outcomes.
Given a discrete probability measure on this space, the probability of an event is the sum of the probabilities of its outcomes.

ProbNetKAT programs are interpreted as Markov kernels on the space 2Pk. A Markov kernel is a function 2Pk → D(2Pk)
where D is the probability (or Giry) monad [20, 28]. Thus, a program p maps an input set of packets a ∈ 2Pk to a distribution
JpK(a) ∈ D(2Pk) over output sets of packets. The semantics uses the following probabilistic constructions:2

• For a discrete measurable space X , D(X ) denotes the set of probability measures over X ; that is, the set of countably
additive functions µ : 2X → [0, 1] with µ(X ) = 1.
• For a measurable function f : X → Y ,D(f ) : D(X ) → D(Y ) denotes the pushforward along f ; that is, the function that
maps a measure µ on X to

D(f )(µ) ≜ µ ◦ f −1 = λA ∈ ΣY . µ({x ∈ X | f (x) ∈ A})

which is called the pushforward measure on Y .
• The unit δ : X → D(X ) of the monad maps a point x ∈ X to the point mass (or Dirac measure) δx ∈ D(X ). The Dirac
measure is given by

δx (A) ≜ [x ∈ A]

That is, the Dirac measure is 1 if x ∈ A and 0 otherwise.
• The bind operation of the monad,

−† : (X → D(Y )) → D(X ) → D(Y )

lifts a function f : X → D(Y ) with deterministic inputs to a function f † : D(X ) → D(Y ) that takes random inputs.
Intuitively, this is achieved by averaging the output of f when the inputs are randomly distributed according to µ.
Formally,

f †(µ)(A) ≜
∑
x ∈X

f (x)(A) · µ(x).

2These can also be defined for uncountable spaces, as would be required to handle the full language.
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• Given two measures µ ∈ D(X ) and ν ∈ D(Y ), µ × ν ∈ D(X × Y ) denotes their product measure. This is the unique
measure satisfying

(µ × ν )(A × B) = µ(A) · ν (B)

Intuitively, it models distributions over pairs of independent values.
Using these primitives, we can now make our operational intuitions precise (see Figure 13 for formal definitions). A predicate

t maps the set of input packets a ∈ 2Pk to the subset of packets b ⊆ a satisfying the predicate (with probability 1). Hence, drop
drops all packets (i.e., it returns the empty set) while skip keeps all packets (i.e., it returns the input set). The test f =n returns
the subset of input packets whose f -field is n. Negation ¬t filters out the packets returned by t .
Parallel composition p & q executes p and q independently on the input set, then returns the union of their results. Note

that packet sets do not model nondeterminism, unlike the usual situation in Kleene algebras—rather, they model collections
of packets traversing possibly different portions of the network simultaneously. In particular, the union operation is not
idempotent: p & p need not have the same semantics as p. Probabilistic choice p ⊕r q feeds the input to both p and q and
returns a convex combination of the output distributions according to r . Sequential composition p ;q can be thought of as a
two-stage probabilistic process: it first executes p on the input set to obtain a random intermediate result, then feeds that
into q to obtain the final distribution over outputs. The outcome of q is averaged over the distribution of intermediate results
produced by p.

We say that two programs are equivalent, denoted p ≡ q, if they denote the same Markov kernel, i.e. if JpK = JqK. As usual,
we expect Kleene star p∗ to satisfy the characteristic fixed point equation p∗ ≡ skip & p ;p∗, which allows it to be unrolled ad
infinitum. Thus we define it as the supremum of its finite unrollings p(n); see Figure 13. This supremum is taken in a CPO
(D(2Pk), ⊑) of distributions that is described in more detail in Appendix A.1. The partial ordering ⊑ on packet set distributions
gives rise to a partial ordering on programs: we write p ≤ q iff JpK(a) ⊑ JqK(a) for all inputs a ∈ 2Pk. Intuitively, p ≤ q iff p
produces any particular output packet π with probability at most that of q for any fixed input—q has a larger probability of
delivering more output packets.

A.1 The CPO (D(2Pk), ⊑)
The space 2Pk with the subset order forms a CPO (2Pk, ⊆). Following Saheb-Djahromi [41], this CPO can be lifted to a CPO
(D(2Pk), ⊑) on distributions over 2Pk. Because 2Pk is a finite space, the resulting ordering ⊑ on distributions takes a particularly
easy form:

µ ⊑ ν ⇐⇒ µ({a}↑) ≤ ν ({a}↑) for all a ⊆ Pk

where {a}↑ ≜ {b | a ⊆ b} denotes upward closure. Intuitively, ν produces more outputs then µ. As was shown in Smolka et al.
[46], ProbNetKAT satisfies various monotonicity (and continuity) properties with respect to this ordering, including

a ⊆ a′ =⇒ JpK(a) ⊑ JpK(a′) and n ≤ m =⇒ Jp(n)K(a) ⊑ Jp(m)K(a).

As a result, the semantics of p∗ as the supremum of its finite unrollings p(n) is well-defined.
While the semantics of full ProbNetKAT requires more domain theory to give a satisfactory characterization of Kleene star,

a simpler characterization suffices for the history-free fragment.

Lemma A.2 (Pointwise Convergence). Let A ⊆ 2Pk. Then for all programs p and inputs a ∈ 2Pk,

Jp∗K(a)(A) = lim
n→∞

Jp(n)K(a)(A).

B Omitted Proofs
Lemma B.1. Let A be a finite boolean combination of basic open sets, i.e. sets of the form Ba = {a} ↑ for a ∈ ℘ω (H), and let L−M
denote the semantics from Smolka et al. [46]. Then for all programs p and inputs a ∈ 2H,

Lp∗M(a)(A) = lim
n→∞

Lp(n)M(a)(A)

Proof. Using topological arguments, the claim follows directly from previous results: A is a Cantor-clopen set by Smolka
et al. [46] (i.e., both A and A are Cantor-open), so its indicator function 1A is Cantor-continuous. But µn ≜ Lp(n)M(a) converges
weakly to µ ≜ Lp∗M(a) in the Cantor topology [13, Theorem 4], so

lim
n→∞

Lp(n)M(a)(A) = lim
n→∞

∫
1Adµn =

∫
1Adµ = Lp∗M(a)(A)

(To see why A and A are open in the Cantor topology, note that they can be written in disjunctive normal form over atoms
B {h } .) □
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Predicates in ProbNetKAT form a Boolean algebra.

Lemma B.2. Every predicate t satisfies JtK(a) = δa∩bt for a certain packet set bt ⊆ Pk, where
• bdrop = ∅,
• bskip = Pk,
• bf =n = {π ∈ Pk | π . f = n},
• b¬t = Pk − bt ,
• bt&u = bt ∪ bu , and
• bt ;u = bt ∩ bu .

Proof. For drop, skip, and f =n, the claim holds trivially. For ¬t , t & u, and t ;u, the claim follows inductively, using that
D(f )(δb ) = δf (b), δb × δc = δ(b ,c), and that f †(δb ) = f (b). The first and last equations hold because ⟨D, δ ,−†⟩ is a monad. □

Proof of Proposition A.1. We only need to show that for dup-free programs p and history-free inputs a ∈ 2Pk, LpM(a) is a
distribution on packets (where we identify packets and singleton histories). We proceed by structural induction on p. All
cases are straightforward except perhaps the case of p∗. For this case, by the induction hypothesis, all Jp(n)K(a) are discrete
probability distributions on packet sets, therefore vanish outside 2Pk. By Lemma B.1, this is also true of the limit Jp∗K(a), as its
value on 2Pk must be 1, therefore it is also a discrete distribution on packet sets. □

Proof of Lemma A.2. This follows directly from Lemma B.1 and Proposition A.1 by noticing that any set A ⊆ 2Pk is a finite
boolean combination of basic open sets. □

Proof of Theorem 3.1. It suffices to show the equality BJpKab = JpK(a)({b}); the remaining claims then follow by well-
definedness of J−K. The equality is shown using Lemma A.2 and a routine induction on p:

For p = drop, skip, f =n, f �n we have

JpK(a)({b}) = δc ({b}) = [b = c] = BJpKab

for c = ∅,a, {π ∈ a | π . f = n}, {π [f := n] | π ∈ a}, respectively.

For ¬t we have,
BJ¬tKab = [b ⊆ a] · BJtKa,a−b

= [b ⊆ a] · JtK(a)({a − b}) (IH)
= [b ⊆ a] · [a − b = a ∩ bt ] (Lemma B.2)
= [b ⊆ a] · [a − b = a − (H − bt )]
= [b = a ∩ (H − bt )]
= J¬tK(a)(b) (Lemma B.2)

For p & q, letting µ = JpK(a) and ν = JqK(a) we have

Jp & qK(a)({b}) = (µ × ν )({(b1,b2) | b1 ∪ b2 = b})
=

∑
b1,b2 [b1 ∪ b2 = b] · (µ × ν )({(b1,b2)})

=
∑
b1,b2 [b1 ∪ b2 = b] · µ({b1}) · ν ({b2})

=
∑
b1,b2 [b1 ∪ b2 = b] · BJpKab1 · BJqKab2 (IH)

= BJp & qKab

where we use in the second step that b ⊆ Pk is finite, thus {(b1,b2) | b1 ∪ b2 = b} is finite.

For p ;q, let µ = JpK(a) and νc = JqK(c) and recall that µ is a discrete distribution on 2Pk. Thus

Jp ;qK(a)({b}) =
∑
c ∈2Pk νc ({b}) · µ({c})

=
∑
c ∈2Pk BJqKc ,b · BJpKa,c

= BJp ;qKab .

For p ⊕r q, the claim follows directly from the induction hypotheses.
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Finally, for p∗, we know that BJp(n)Kab = Jp(n)K(a)({b}) by induction hypothesis. The key to proving the claim is Lemma A.2,
which allows us to take the limit on both sides and deduce

BJp∗Kab = lim
n→∞
BJp(n)Kab = lim

n→∞
Jp(n)K(a)({b}) = Jp∗K(a)({b}). □

Proof of Lemma 4.1. For arbitrary a,b ⊆ Pk, we have∑
a′,b′
SJpK(a,b),(a′,b′) =

∑
a′,b′
[b ′ = a ∪ b] · BJpKa,a′

=
∑
a′

(∑
b′
[b ′ = a ∪ b]

)
· BJpKa,a′

=
∑
a′
BJpKa,a′ = 1

where in the last step, we use that BJpK is stochastic (Theorem 3.1). □

Proof of Lemma 4.3. By induction on n ≥ 0. For n = 0, we have∑
a′
[b ′ = a′ ∪ b] · BJp(n)Ka,a′ =

∑
a′
[b ′ = a′ ∪ b] · BJskipKa,a′

=
∑
a′
[b ′ = a′ ∪ b] · [a = a′]

= [b ′ = a ∪ b]

= [b ′ = a ∪ b] ·
∑
a′
BJpKa,a′

=
∑
a′
SJpK(a,b),(a′,b′)

In the induction step (n > 0), ∑
a′
[b ′ = a′ ∪ b] · BJp(n)Ka,a′

=
∑
a′
[b ′ = a′ ∪ b] · BJskip & p ;p(n−1)Ka,a′

=
∑
a′
[b ′ = a′ ∪ b] ·

∑
c

[a′ = a ∪ c] · BJp ;p(n−1)Ka,c

=
∑
c

(∑
a′
[b ′ = a′ ∪ b] · [a′ = a ∪ c]

)
·
∑
k

BJpKa,k · BJp(n−1)Kk ,c

=
∑
c ,k

[b ′ = a ∪ c ∪ b] · BJpKa,k · BJp(n−1)Kk ,c

=
∑
k

BJpKa,k ·
∑
a′
[b ′ = a′ ∪ (a ∪ b)] · BJp(n−1)Kk ,a′

=
∑
k

BJpKa,k ·
∑
a′
SJpKn

(k ,a∪b),(a′,b′)

=
∑
a′

∑
k1,k2

[k2 = a ∪ b] · BJpKa,k1 · SJpKn
(k1,k2),(a′,b′)

=
∑
a′

∑
k1,k2

SJpK(a,b)(k1,k2) · SJpKn
(k1,k2),(a′,b′)

=
∑
a′
SJpKn+1

(a,b),(a′,b′) □

Lemma B.3. The matrix X = I −Q in Equation (2) of §4 is invertible.
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Proof. Let S be a finite set of states, |S | = n, M an S × S substochastic matrix (Mst ≥ 0, M1 ≤ 1). A state s is defective
if (M1)s < 1. We say M is stochastic if M1 = 1, irreducible if (

∑n−1
i=0 M

i )st > 0 (that is, the support graph of M is strongly
connected), and aperiodic if all entries of some power ofM are strictly positive.

We show that ifM is substochastic such that every state can reach a defective state via a path in the support graph, then the
spectral radius ofM is strictly less than 1. Intuitively, all weight in the system eventually drains out at the defective states.

Let es , s ∈ S , be the standard basis vectors. As a distribution, eTs is the unit point mass on s . For A ⊆ S , let eA =
∑

s ∈A es . The
L1-norm of a substochastic vector is its total weight as a distribution. Multiplying on the right by M never increases total
weight, but will strictly decrease it if there is nonzero weight on a defective state. Since every state can reach a defective state,
this must happen after n steps, thus ∥eTs Mn ∥1 < 1. Let c = maxs ∥eTs Mn ∥1 < 1. For any y =

∑
s ases ,

∥yTMn ∥1 = ∥(
∑
s

ases )
TMn ∥1

≤
∑
s

|as | · ∥e
T
s M

n ∥1 ≤
∑
s

|as | · c = c · ∥y
T ∥1.

ThenMn is contractive in the L1 norm, so |λ | < 1 for all eigenvalues λ. Thus I −M is invertible because 1 is not an eigenvalue
ofM . □

Proof of Proposition 4.6.

1. It suffices to show thatUSU = SU . Suppose that

Pr[(a,b)
U SU
−−−−→1 (a

′,b ′)] = p > 0.

It suffices to show that this implies
Pr[(a,b)

SU
−−→1 (a

′,b ′)] = p.

If (a,b) is saturated, then we must have (a′,b ′) = (∅,b) and

Pr[(a,b)
U SU
−−−−→1 (∅,b)] = 1 = Pr[(a,b)

SU
−−→1 (∅,b)]

If (a,b) is not saturated, then (a,b)
U
−→1 (a,b) with probability 1 and therefore

Pr[(a,b)
U SU
−−−−→1 (a

′,b ′)] = Pr[(a,b)
SU
−−→1 (a

′,b ′)]

2. Since S andU are stochastic, clearly SU is a MC. Since SU is finite state, any state can reach an absorbing communication
class. (To see this, note that the reachability relation

SU
−−→ induces a partial order on the communication classes of SU . Its

maximal elements are necessarily absorbing, and they must exist because the state space is finite.) It thus suffices to show
that a state set C ⊆ 2Pk × 2Pk in SU is an absorbing communication class iff C = {(∅,b)} for some b ⊆ Pk.

“⇐”: Observe that ∅ B
−→1 a

′ iff a′ = ∅. Thus (∅,b) S
−→1 (a

′,b ′) iff a′ = ∅ and b ′ = b, and likewise (∅,b) U
−→1 (a

′,b ′) iff a′ = ∅
and b ′ = b. Thus (∅,b) is an absorbing state in SU as required.

“⇒”: First observe that by monotonicity of SU (Lemma 4.5), we have b = b ′ whenever (a,b)
SU
←→ (a′,b ′); thus there exists a

fixed bC such that (a,b) ∈ C implies b = bC .

Now pick an arbitrary state (a,bC ) ∈ C . It suffices to show that (a,bC )
SU
−−→ (∅,bC ), because that implies (a,bC )

SU
←→

(∅,bC ), which in turn implies a = ∅. But the choice of (a,bC ) ∈ C was arbitrary, so that would mean C = {(∅,bC )} as
claimed.

To show that (a,bC )
SU
−−→ (∅,bC ), pick arbitrary states such that

(a,bC )
S
−→ (a′,b ′)

U
−→1 (a

′′,b ′′)

and recall that this implies (a,bC )
SU
−−→ (a′′,b ′′) by claim (1). Then (a′′,b ′′)

SU
−−→ (a,bC ) because C is absorbing, and thus

bC = b
′ = b ′′ by monotonicity of S ,U , and SU . But (a′,b ′) was chosen as an arbitrary state S-reachable from (a,bC ), so

(a,b) and by transitivity (a′,b ′) must be saturated. Thus a′′ = ∅ by the definition ofU . □
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Proof of Theorem 4.7. Using Proposition 4.6.1 in the second step and equation (3) in the last step,

lim
n→∞

∑
a′

Sn
(a,b),(a′,b′) = lim

n→∞

∑
a′
(SnU )(a,b),(a′,b′)

= lim
n→∞

∑
a′
(SU )n

(a,b),(a′,b′)

=
∑
a′
(SU )∞

(a,b),(a′,b′) = (SU )
∞
(a,b),(∅,b′)

(SU )∞ is computable because S andU are matrices over Q and hence so is (I −Q)−1R. □

Corollary B.4. For programs p and q, it is decidable whether p ≡ q.

Proof of Corollary B.4. Recall from Corollary 3.2 that it suffices to compute the finite rational matrices BJpK and BJqK and
check them for equality. But Theorem 4.7 together with Proposition 4.2 gives us an effective mechanism to compute BJ−K in
the case of Kleene star, and BJ−K is straightforward to compute in all other cases. Summarizing the full chain of equalities, we
have:

Jp∗K(a)({b}) = BJp∗Ka,b = lim
n→∞
BJp(n)Ka,b = lim

n→∞

∑
a′
SJpKn

(a,∅),(a′,b) = (SU )
∞
(a,∅),(∅,b)

following from Theorem 3.1, Definition of BJ−K, Proposition 4.2, and finally Theorem 4.7. □

C Handling Full ProbNetKAT: Obstacles and Challenges
History-free ProbNetKAT can describe sophisticated network routing schemes under various failure models, and the program
semantics can be computed exactly. Performing quantitative reasoning in full ProbNetKAT appears significantly more chal-
lenging. We illustrate some of the difficulties in deciding program equivalence; recall that this is decidable for the history-free
fragment (Corollary B.4).

The main difference in the original ProbNetKAT language is an additional primitive dup. Intuitively, this command duplicates
a packet π ∈ Pk and outputs the word ππ ∈ H, where H = Pk∗ is the set of non-empty, finite sequences of packets. An element
of H is called a packet history, representing a log of previous packet states. ProbNetKAT policies may only modify the first
(head) packet of each history; dup fixes the current head packet into the log by copying it. In this way, ProbNetKAT policies
can compute distributions over the paths used to forward packets, instead of just over the final output packets.
However, with dup, the semantics of ProbNetKAT becomes significantly more complex. Policies p now transform sets of

packet histories a ∈ 2H to distributions JpK(a) ∈ D(2H). Since 2H is uncountable, these distributions are no longer guaranteed
to be discrete, and formalizing the semantics requires full-blown measure theory (see prior work for details [46]).

Without dup, policies operate on sets of packets 2Pk; crucially, this is a finite set and we can represent each set with a single
state in a finite Markov chain. With dup, policies operate on sets of packet histories 2H. Since this set is not finite—in fact, it is
not even countable—encoding each packet history as a state would give a Markov chain with infinitely many states. Procedures
for deciding equivalence are not known for such systems in general.

While in principle there could be a more compact representation of general ProbNetKAT policies as finite Markov chains or
other models where equivalence is decidable, (e.g., weighted or probabilistic automata [12] or quantitative variants of regular
expressions [3]), we suspect that deciding equivalence in the presence of dup may be intractable. As circumstantial evidence,
ProbNetKAT policies can simulate a probabilistic variant of multitape automaton originally introduced by Rabin and Scott [39].
We specialize the definition here to two tapes, for simplicity, but ProbNetKAT programs can encode any multitape automata
with any fixed number of tapes.

Definition C.1. Let A be a finite alphabet. A probabilistic multitape automaton is defined by a tuple (S, s0, ρ, τ ) where S is a
finite set of states; s0 ∈ S is the initial state; ρ : S → (A ∪ {_})2 maps each state to a pair of letters (u,v), where either u or v
may be a special blank character _; and the transition function τ : S → D(S) gives the probability of transitioning from one
state to another.

The semantics of an automaton can be defined as a probability measure on the space A∞ × A∞, where A∞ is the set of
finite and (countably) infinite words over the alphabet A. Roughly, these measures are fully determined by the probabilities of
producing any two finite prefixes of words (w,w ′) ∈ A∗ ×A∗.

Presenting the formal semantics would require more concepts from measure theory and take us far afield, but the basic idea
is simple to describe. An infinite trace of a probabilistic multitape automaton over states s0, s1, s2, . . . gives a sequence of pairs
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of (possibly blank) letters:
ρ(s0), ρ(s1), ρ(s2) . . .

By concatenating these pairs together and dropping all blank characters, a trace induces two (finite or infinite) words over the
alphabet A. For example, the sequence,

(a0, _), (a1, _), (_,a2), . . .

gives the words a0a1 . . . and a2 . . . . Since the traces are generated by the probabilistic transition function τ , each automaton
gives rise to a probability measure over pairs of infinite words.
Probabilistic multitape automata can be encoded as ProbNetKAT policies with dup. We sketch the idea here, deferring

further details to Appendix D. Suppose we are given an automaton (S, s0, ρ, τ ). We build a ProbNetKAT policy over packets
with two fields, st and id. The first field st ranges over the states S and the alphabet A, while the second field id is either 1 or
2; we suppose the input set has exactly two packets labeled with id = 1 and id = 2. In a set of packet history, the two active
packets have the same value for st ∈ S—this represents the current state in the automaton. Past packets in the history have
st ∈ A, representing the words produced so far; the first and second components of the output are tracked by the histories
with id = 1 and id = 2. We can encode the transition function τ as a probabilistic choice in ProbNetKAT, updating the current
state st of all packets, and recording non-blank letters produced by ρ in the two components by applying dup on packets with
the corresponding value of id.

Intuitively, a set of packet histories generated by the resulting ProbNetKAT term describes a pair of words generated by the
original automaton. With a bit more bookkeeping (see Appendix D), we can show that two probabilistic multitape automata
are equivalent if and only if their encoded ProbNetKAT policies are equivalent. Thus, deciding equivalence for ProbNetKAT
with dup is harder than deciding equivalence for probabilistic multitape automata; similar reductions have been considered
before for showing undecidability of related problems about KAT [29] and probabilistic NetKAT [24].

Deciding equivalence between probabilistic multitape automata is a challenging open problem. In the special case where only
one word is generated (say, when the second component produced is always blank), these automata are equivalent to standard
automata with ε-transitions (e.g., see Mohri [37]). In this setting, non-productive steps can be eliminated and the automata
can be modeled as finite state Markov chains, where equivalence is decidable. In our setting, however, steps producing blank
letters in one component may produce non-blank letters in the other. As a result, it is not clear how to eliminate these steps
and encode our automata as Markov chains. Removing probabilities, it is known that equivalence between non-deterministic
multitape automata is undecidable [22]. Deciding equivalence of deterministic multitape automata remained a challenging
open question for many years, until Harju and Karhumäki [23] surprisingly settled the question positively; Worrell [50] later
gave an alternative proof. If equivalence of probabilistic multitape automata is undecidable, then equivalence is undecidable
for ProbNetKAT programs as well. However if equivalence turns out to be decidable, the proof technique may shed light on
how to decide equivalence for the full ProbNetKAT language.

D Encoding 2-Generative Automata in Full ProbNetKAT
To keep notation light, we describe our encoding in the special case where the alphabet A = {x,y}, there are four states
S = {s1, s2, s3, s4}, the initial state is s1, and the output function ρ is

ρ(s1) = (x, _) ρ(s2) = (y, _) ρ(s3) = (_, x) ρ(s4) = (_,y).

Encoding general automata is not much more complicated. Let τ : S → D(S) be a given transition function; we write pi , j for
τ (si )(sj ). We will build a ProbNetKAT policy simulating this automaton. Packets have two fields, st and id, where st ranges
over S ∪A ∪ {•} and id ranges over {1, 2}. Define:

p ≜ st=s1 ; loop∗ ; st�•

The initialization keeps packets that start in the initial state, while the final command marks histories that have exited the loop
by setting st to be the special letter •.

The main program loop first branches on the current state st:

loop ≜ case


st=s1 : state1
st=s2 : state2
st=s3 : state3
st=s4 : state4
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Then, the policy simulates the behavior from each state. For instance:

state1 ≜
⊕ 

(if id=1 then st�x ; dup else skip) ; st�s1 @ p1,1,

(if id=1 then st�y ; dup else skip) ; st�s2 @ p1,2,

(if id=2 then st�x ; dup else skip) ; st�s3 @ p1,3,

(if id=2 then st�y ; dup else skip) ; st�s4 @ p1,4

The policies state2, state3, state4 are defined similarly.
Now, suppose we are given two probabilistic multitape automataW ,W ′ that differ only in their transition functions. For

simplicity, we will further assume that both systems have strictly positive probability of generating a letter in either component
in finitely many steps from any state. Suppose they generate distributions µ, µ ′ respectively over pairs of infinite words
Aω ×Aω . Now, consider the encoded ProbNetKAT policies p,p ′. We argue that JpK = JqK if and only if µ = µ ′.3

First, it can be shown that JpK = Jp ′K if and only if JpK(e) = Jp ′K(e), where

e ≜ {ππ | π ∈ Pk}.

Let ν = JpK(e) and ν ′ = Jp ′K(e). The key connection between the automata and the encoded policies is the following equality:

µ(Su ,v ) = ν (Tu ,v ) (4)

for every pair of finite prefixes u,v ∈ A∗. In the automata distribution on the left, Su ,v ⊆ Aω ×Aω consists of all pairs of infinite
strings where u is a prefix of the first component and v is a prefix of the second component. In the ProbNetKAT distribution
on the right, we first encode u and v as packet histories. For i ∈ {1, 2} representing the component andw ∈ A∗ a finite word,
define the history

hi (w) ∈ H ≜ (st = •, id = i), (st = w[|w |], id = i), . . . , (st = w[1], id = i), (st = s1, id = i).

The letters of the wordw are encoded in reverse order because by convention, the head/newest packet is written towards the
left-most end of a packet history, while the oldest packet is written towards the right-most end. For instance, the final letter
w[|w |] is the most recent (i.e., the latest) letter produced by the policy. Then, Tu ,v is the set of all history sets including h1(u)
and h2(v):

Tu ,v ≜ {a ∈ 2H | h1(u) ∈ a, h2(v) ∈ a}.
Now JpK = Jp ′K implies µ = µ ′, since (4) gives

µ(Su ,v ) = µ ′(Su ,v ).

The reverse implication is a bit more delicate. Again by (4), we have

ν (Tu ,v ) = ν
′(Tu ,v ).

We need to extend this equality to all cones, defined by packet histories h:

Bh ≜ {a ∈ 2H | h ∈ a}.

This follows by expressing Bh as boolean combinations of Tu ,v , and observing that the encoded policy produces only sets of
encoded histories, i.e., where the most recent state st is set to • and the initial state st is set to s1.

E Background on Datacenter Topologies
Data center topologies typically organize the network fabric into several levels of switches.

FatTree. A FatTree [2] is perhaps the most common example of a multi-level, multi-rooted tree topology. Figure 6 shows a
3-level FatTree topology with 20 switches. The bottom level, edge, consists of top-of-rack (ToR) switches; each ToR switch
connects all the hosts within a rack (not shown in the figure). These switches act as ingress and egress for intra-data center
traffic. The other two levels, aggregation and core, redundantly connect the switches from the edge layer.
The redundant structure of a FatTree makes it possible to implement fault-tolerant routing schemes that detect and

automatically route around failed links. For instance, consider routing from a source to a destination along shortest paths—e.g.,
the green links in the figure depict one possible path from (s7) to (s1). On the way from the ToR to the core switch, there are
multiple paths that could be used to carry the traffic. Hence, if one of the links goes down, the switches can route around the
failure by simply choosing a different path. Equal-cost multi-path (ECMP) routing is widely used—it automatically chooses
among the available paths while avoiding longer paths that might increase latency.
3We will not present the semantics of ProbNetKAT programs with dup here; instead, the reader should consult earlier papers [13, 46] for the full development.
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However, after reaching a core switch, there is a unique shortest path down to the destination. Hence, ECMP no longer
provides any resilience if a switch fails in the aggregation layer (cf. the red cross in Figure 6). A more sophisticated scheme could
take a longer (5-hop) detour going all the way to another edge switch, as shown by the red lines in the figure. Unfortunately,
such detours can lead to increased latency and congestion.

AB FatTree. The long detours on the downward paths in FatTrees are dictated by the symmetric wiring of aggregation
and core switches. AB FatTrees [34] alleviate this by using two types of subtrees, differing in their wiring to higher levels.
Figure 11(a) shows how to rewire a FatTree to make it an AB FatTree. The two types of subtrees are as follows:

i) Type A: switches depicted in blue and wired to core using dashed lines.
ii) Type B: switches depicted in red and wired to core using solid lines.

Type A subtrees are wired in a way similar to FatTree, but Type B subtrees differ in their connections to core switches. In our
diagrams, each aggregation switch in a Type A subtree is wired to adjacent core switches, while each aggregation switch in
a Type B subtree is wired to core switches in a staggered manner. (See the original paper by Liu et al. [34] for the general
construction.)
This slight change in wiring enables much shorter detours around failures in the downward direction. Consider again

routing from source (s7) to destination (s1). As before, we have multiple options going upwards when following shortest
paths (e.g., the one depicted in green), as well as a unique downward path. But unlike FatTree, if the aggregation switch on
the downward path fails, there is a short detour, as shown in blue. This path exists because the core switch, which needs to
re-route traffic, is connected to aggregation switches of both types of subtrees. More generally, aggregation switches of the
same type as the failed switch provide a 5-hop detour; but aggregation switches of the opposite type provide an efficient 3-hop
detour.
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