
A (CO)ALGEBRAIC APPROACH TO PROGRAMMING
AND VERIFYING COMPUTER NETWORKS

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Steffen Juilf Smolka

December 2019



c⃝ 2019 Steffen Juilf Smolka

ALL RIGHTS RESERVED



A (CO)ALGEBRAIC APPROACH TO PROGRAMMING AND VERIFYING COMPUTER

NETWORKS

Steffen Juilf Smolka, Ph.D.

Cornell University 2019

As computer networks have grown into some of the most complex and critical computing

systems today, the means of configuring them have not kept up: they remain manual,

low-level, and ad-hoc. This makes network operations expensive and network outages

due to misconfigurations commonplace. The thesis of this dissertation is that high-

level programming languages and formal methods can make network configuration

dramatically easier and more reliable.

The dissertation consists of three parts. In the first part, we develop algorithms for

compiling a network programming language with high-level abstractions to low-level

network configurations, and introduce a symbolic data structure that makes compilation

efficient in practice. In the second part, we develop foundations for a probabilistic

network programming language using measure and domain theory, showing that conti-

nuity can be exploited to approximate (statistics of) packet distributions algorithmically.

Based on this foundation and the theory of Markov chains, we then design a network

verification tool that can reason about fault-tolerance and other probabilistic properties,

scaling to data-center-size networks. In the third part, we introduce a general-purpose

(co)algebraic framework for designing and reasoning about programming languages, and

show that it permits an almost linear-time decision procedure for program equivalence.

We hope that the framework will serve as a foundation for efficient verification tools, for

networks and beyond, in the future.





Biographical Sketch

Steffen Smolka grew up in Saarbrücken, Germany, where he graduated from Gymnasium

am Schloss in 2010. He spent 10th grade as a foreign exchange student in Ashland,

Wisconsin, developing a passion for cultural exchange. Steffen went on to study computer

science at Technical University Munich in 2010, graduating with a Bachelor of Science

with a minor in mathematics in 2013. Combining his passions for cultural exchange and

math and sciences, Steffen enrolled as a doctoral student in computer science at Cornell

University in 2013, graduating in 2019. During this period, he spent summers with

Dimitrios Vytiniotis at Microsoft Research in Cambridge, UK; at Barefoot Networks and

Stanford University in Palo Alto, California; with Alexandra Silva at University College

London; and with the Google Cloud team in Sunnyvale, California.

iii



To my parents, for teaching me the important things in life.

And to my brother, for being my role model and friend from day one.

iv



Acknowledgements

The road towards a Ph.D. was wonderful, but undeniably long and at times tough. I owe

a grate deal to the people who supported me along the way.

First and foremost, I am grateful to my adviser and mentor Nate Foster. Nate and

I share a passion for bringing theory to bear on real-world problems. This has been a

major theme throughout my Ph.D. Nate also introduced me to NetKAT (in our very first

research meeting), a second major theme throughout my Ph.D. Big challenges come with

occasional struggles and self-doubts; it was invaluable to have an adviser who supported,

nurtured, and pushed me, but most of all firmly believed in me. I entered countless

meetings with a sense of defeat after having hit a roadblock, but left full of energy and

motivation after talking to Nate.

Dexter Kozen served on my committee and became somewhat of an inofficial second

adviser. Dexter has an incredible sense for technical elegance; I will forever strive to

inherit it. I am grateful for always finding an open door when looking to discuss ideas or

understand unfamiliar math; and for always getting a quick reply to my countless emails,

sent at all times of the day, asking questions about various corners of the mathematical

universe.

I credit Bobby Kleinberg, the third member of my committee, for teaching my

favorite class at Cornell: Analysis of Algorithms. I also blame him for (unwittingly)

instilling occasional doubts in me about picking the right concentration. I am grateful

for his feedback and advice along the way.

v



I was fortunate to work with outstanding collaborators over the years; without their

contributions, the papers in this dissertation would not have been written: Spiridon

Eliopoulos, Nate Foster, Arjun Guha, Justin Hsu, David Kahn, Tobias Kappé, Praveen

Kumar, Dexter Kozen, and Alexandra Silva.

Dimitrios Vytiniotis hosted me for a summer at Microsoft Research in Cambridge,

UK during my early days as a graduate student. Thank you for an incredibly fun, intense,

and intellectually stimulating time, and many hours of hands-on work together.

I spent another wonderful summer with Alexandra Silva at UCL in London. Alexan-

dra has been a collaborator, role model, and by now great friend. I am very grateful

for multiple invitations to the Bellairs workshop in Barbados, where Alexandra and I

worked on end on automata and decision procedures for various KATs. The workshops

also allowed me to get to know many brilliant researchers on a more personal level,

making me feel a lot more at home in the world of academia. Thank you to the Barbados

Crew (and Prakash Panangaden in particular)!

Working with Justin Hsu during his postdoc was one of my favorite times at Cornell

(and culminated in a proof with a seven-line subscript!). Thank you for the advice,

discussions about |Gün coin, and for convincing me to finally give IPAs a real shot.

My time in Ithaca would have lacked color if it were not for the great friends I

made along the way. Thank you to my first housemate Rahim Gulamaliyev, for getting

me started in Collegetown; to Thodoris Lykouris, for braking my undergrad habit of

quitting problem sets after solving 60%; to Rahmtin Rotabi, for being there for me when

I needed a friend; to Mischa Olson and Aditya Vaidyanathan, for playing countless hours

of Loopin’ Louie with me; to Zoya Segelbacher, for teaching me yoga; and to Mystery

Machine, the team who drinks together and wins together.

I am especially grateful to my housemates at Lake Street, who have been like a

family to me. Thank you to Jonathan DiLorenzo, for enthusiastically supporting my

vi



crazy, impulsive ideas and for discussing my research with me; to Molly Feldman, for

being my favorite office mate and making the best Eggplant Parm; to Daniel Freund,

for being my German friend abroad; and to Amir Montazeri, for sharing my passion for

Gennaro Contaldo. Thanks also to the former Lake Street inhabitants Sam Hopkins, Eoin

O’Mahony, and Mark Reitblatt.

Marisa, you were there from day one. I will be forever grateful for your love and

support, and for the beautiful times we spent together.

Finally, I thank my family; I would not be where I am without them. My dad deserves

special thanks for feeding me with captivating functional-programming puzzles long

before I ever imagined studying computer science; and my mum deserves special thanks

for teaching me that the truly important things in life are not a matter of science.

Funding. My research was founded by a DAAD scholarship; by a Cornell University fel-

lowship; by the National Science Foundation under grants CNS-1111698, CCF-1421752,

and CCF-1637532; by the Office of Naval Research under grant N00014-15-1-2177; and

by a gift from InfoSys.

This dissertation was typeset in Bitsream Charter using LATEX 2ε.

vii





Table of Contents

1 Introduction 1
1.1 Overview of Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Approach 1: High-level Programming Languages . . . . . . . . . 3
1.1.2 Approach 2: Automated Verification . . . . . . . . . . . . . . . . 5
1.1.3 Combined Approach . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

I Deterministic Networks 9

2 Compilation 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Local Compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Global Compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.1 NetKAT Automata . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4.2 Local Program Generation . . . . . . . . . . . . . . . . . . . . . . 37

2.5 Virtual Compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

II Probabilistic Networks 57

3 Semantic Foundations 59
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.4 ProbNetKAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.5 Cantor Meets Scott . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.6 A DCPO on Markov Kernels . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.7 Continuity and Semantics of Iteration . . . . . . . . . . . . . . . . . . . . 93

ix



3.8 Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.9 Implementation and Case Studies . . . . . . . . . . . . . . . . . . . . . . 98
3.10 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
3.11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4 Scalable Verification 107
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.3 ProbNetKAT Syntax and Semantics . . . . . . . . . . . . . . . . . . . . . 115
4.4 Computing Stochastic Matrices . . . . . . . . . . . . . . . . . . . . . . . 119
4.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.5.1 Native Backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
4.5.2 PRISM Backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
4.7 Case Study: Data Center Fault-Tolerance . . . . . . . . . . . . . . . . . . 135
4.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
4.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

III A Family of Programming Languages 143

5 Guarded Kleene Algebra with Tests 145
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.2 Overview: An Abstract Programming Language . . . . . . . . . . . . . . 148

5.2.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
5.2.2 Semantics: Language Model . . . . . . . . . . . . . . . . . . . . . 149
5.2.3 Relational Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
5.2.4 Probabilistic Model . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.3 Axiomatization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
5.3.1 Some Simple Axioms . . . . . . . . . . . . . . . . . . . . . . . . . 157
5.3.2 A Fundamental Theorem . . . . . . . . . . . . . . . . . . . . . . . 160
5.3.3 Derivable Facts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
5.3.4 A Limited Form of Completeness . . . . . . . . . . . . . . . . . . 164

5.4 Automaton Model and Kleene Theorem . . . . . . . . . . . . . . . . . . 167
5.4.1 Automata and Languages . . . . . . . . . . . . . . . . . . . . . . 168
5.4.2 Expressions to Automata: a Thompson Construction . . . . . . . 169
5.4.3 Automata to Expressions: Solving Linear Systems . . . . . . . . . 172

5.5 Decision Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
5.5.1 Normal Coalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . 177
5.5.2 Bisimilarity for Normal Coalgebras . . . . . . . . . . . . . . . . . 179
5.5.3 Deciding Equivalence . . . . . . . . . . . . . . . . . . . . . . . . 184

5.6 Completeness for the Language Model . . . . . . . . . . . . . . . . . . . 186
5.6.1 Systems of Left-Affine Equations . . . . . . . . . . . . . . . . . . 187
5.6.2 General Completeness . . . . . . . . . . . . . . . . . . . . . . . . 189

x



5.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
5.8 Conclusions and Future Directions . . . . . . . . . . . . . . . . . . . . . 192

IV Conclusion 195

6 Conclusion 197
6.1 Thoughts on Practical Impact . . . . . . . . . . . . . . . . . . . . . . . . 197
6.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

Bibliography 201

V Appendix 223

A Appendix to Chapter 3 225
A.1 (M(2H),⊑) is not a Semilattice . . . . . . . . . . . . . . . . . . . . . . . 225
A.2 Non-Algebraicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
A.3 Cantor Meets Scott . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
A.4 A DCPO on Markov Kernels . . . . . . . . . . . . . . . . . . . . . . . . . 227
A.5 Continuity of Kernels and Program Operators and a Least-Fixpoint Char-

acterization of Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
A.5.1 Products and Integration . . . . . . . . . . . . . . . . . . . . . . . 231
A.5.2 Continuous Operations on Measures . . . . . . . . . . . . . . . . 237
A.5.3 Continuous Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . 239
A.5.4 Continuous Operations on Kernels . . . . . . . . . . . . . . . . . 243
A.5.5 Iteration as Least Fixpoint . . . . . . . . . . . . . . . . . . . . . . 246

A.6 Approximation and Discrete Measures . . . . . . . . . . . . . . . . . . . 251

B Appendix to Chapter 4 255
B.1 ProbNetKAT Denotational Semantics for History-free Fragment . . . . . 255

B.1.1 The CPO (D(2Pk),⊑) . . . . . . . . . . . . . . . . . . . . . . . . . 258
B.2 Omitted Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
B.3 Background on Datacenter Topologies . . . . . . . . . . . . . . . . . . . 266

C Appendix to Chapter 5 269
C.1 Omitted Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
C.2 Generalized Guarded Union . . . . . . . . . . . . . . . . . . . . . . . . . 299

xi





Chapter 1

Introduction

“In the beginning, there was chaos.”

—Hesiod, Theogony

As computer networks have grown into some of the most complex and critical com-

puting systems today, the means of configuring them have not kept up: they remain

embarrassingly manual, low-level, and ad-hoc. This makes network operations expensive

and network outages due to misconfigurations commonplace. Answering even the most

basic questions about network behavior, such as, “Why did my packet not get delivered?”,

requires tedious manual reasoning and investigating, or is right out impossible. At a high

level, there are three main contributors to this issue.

The visibility problem. Modern networks are essentially black boxes, permitting very

limited visibility into the processing of individual packets. While software developers

can step through the execution of their code line by line with debugging tools, there

are no comparable tools for network engineers. Even determining basic information,

such as the path that a packet takes through a network, can be challenging. Network

engineers must resort to low-level tools such as PING and TRACEROUTE, validating and

invalidating hypotheses about network behavior through packet probes. Given the

1



limited observability—e.g., one may observe that a packet was dropped, but this leaves

open why and where it was dropped—this process is time-consuming, error-prone, and

often inconclusive.

The state space problem. The visibility problem is exacerbated by the vast size of

the state space that network administrators must reason about. For example, there are

2160 different IPv4 headers, influencing how a packet gets processed by the network.

Thus, even when the behavior of individual packets is understood, it is challenging to

establish more general properties such as, “All TCP packets from the internet can reach

the web server”, or, “No packet from point A can reach point B”. In particular, the number

of packets is too large to reduce, through naive enumeration, a universal or existential

property to multiple single-packet properties.

The semantic gap problem. Configuring a network requires translating network-wide,

high-level objectives—i.e., the network operator’s intent—to device-local, hardware-level

configurations. For example, the intent “Hosts A and B can communicate” may necessitate

assigning IP addresses and configuring routing tables across multiple devices. Thus,

configuring a network requires bridging a large semantic gap: from global to local, and

from high-level to low-level. Today this is typically done by hand, which is slow, tedious,

and error-prone. This semantic gap also makes it hard to reason about global network

behavior, since it arises—possibly through complex interactions—from the local behavior

of multiple devices and their low-level configurations.

The thesis of this dissertation is that high-level programming languages and formal

methods can address these problems, making network configuration dramatically easier

and more reliable.

2



1.1 Overview of Approach

We propose two largely orthogonal approaches to making the configuration of networks

easier and more reliable. The approaches synergize when applied in conjunction, but may

also be applied independently. The first approach focuses on closing the semantics gap,

whereas the second approach focuses on solving the visibility and state space problems.

1.1.1 Approach 1: High-level Programming Languages

We propose using domain-specific, high-level programming languages to configure

networks. This has a number of advantages over the low-level approach to configuration

that is pervasive today; in particular, many of the well-known advantages from general-

purpose programming apply also to networking.

Our primary motivation is that high-level languages can offer abstractions that are

significantly closer to the mental models of network operators than the hardware-level

interfaces exposed by network devices. Thus, the semantic gap between a network

operator’s intent and a program encoding this intent is reduced, and can be bridged by

the operator with greater efficiency and accuracy, making configuration changes less

costly and error-prone. Some secondary advantages include:

• Modularity: High-level languages can offer mechanisms that support the separa-

tion of concerns: a program can be structured as a collection of largely independent

components that are then composed to form the overall configuration. This reduces

complexity, facilitates code reuse, and allows developing separate components in

parallel.

• Portability: High-level languages can abstract hardware-level details, making

it possible to use the same program to configure, e.g., hardware from different

vendors. They can also offer mechanisms to abstract the physical network topology,

3



making it possible to evolve the network configuration largely independently from

the network topology.

• Safety: High-level languages can rules out large classes of misconfigurations simply

by making it impossible to express these undesirable configurations in the language.

Mechanisms such as type-systems can be employed to rule out additional errors.

By reducing the semantic gap and introducing natural abstractions, high-level

languages not only make it easier to program the network, but also to reason about the

network’s behavior, since reasoning can now take place at the language-level instead of

the hardware-level.

Suitable network programming languages have already been proposed in the litera-

ture [6, 43, 116, 120, 174]. However, the approach depends crucially on compilation

algorithms that can implement the high-level abstractions exposed by such languages.

To be practical, the algorithms must meet additional requirements:

• Efficiency: Network devices tend to require frequent reconfigurations. Thus

compilation must scale to real-world networks with thousands of switches in

seconds.

• Frugality: Network devices have tight resource limitations. Thus compilation must

produce code that is economical in its use of hardware resources.

• Soundness: The compilation algorithms should bridge the semantic gap reliably

without introducing errors. At a minimum, one should be able to state formal

correctness properties; ideally, the implementation should be formally verified.

We develop a compiler meeting these requirements in Chapter 2, thus making a key

contribution towards making the high-level language approach to network configuration

viable.

4



1.1.2 Approach 2: Automated Verification

Our second proposal aims at addressing the visibility and state space problems, which

make it hard to observe and reason about network behavior.

It is natural to address the visibility problem—the fact that today’s networking

devices are essentially black boxes—by proposing a different hardware design with

improved visibility, for example through the logging of processing steps. In fact, such an

approach has become viable [80] thanks to recent hardware advances [122]. However,

visibility alone is arguably not enough; state-of-the-art switches forward over a billion

packets per second [122], meaning that network misbehavior can cause serious harm

before it has been observed, analyzed, and debugged, even with perfect visibility. What

is needed is foresight, not just sight: bugs should be ruled out before they ever manifest.

We propose using automated verification tools to rule out network misconfigurations.

The approach consists of two parts. First, the verification tools builds a mathematical

model of the network (based on its configuration). Second, the verification tool analyzes

the model and establishes desired properties (or reports violations of these properties).

The mathematical network model solves the visibility problem: the model can be used to

predict network behavior accurately. Verification solves the state space problem: formal

proofs ensure that the properties of interest hold for all packets. Under the hood, this

relies on symbolic techniques that can reason about the large state space efficiently.

Network verification has by now become an active research area with many recent

advances [14, 45, 77, 79, 136, 178]. However, prior work ignores probabilistic network

features such as random link failures or randomized and fault-tolerant routing schemes,

assuming instead that network behavior is deterministic; and it can only establish

qualitative properties.

In Chapter 3, we develop the denotational semantics of a probabilistic network

programming and verification language, a suitable framework for reasoning about proba-

5



bilistic network behavior. This addresses the visibility problem for probabilistic networks.

In Chapter 4, we build on this foundation and develop a probabilistic verification tool that

can reason about quantitative properties such as fault-tolerance, scaling to real-world

networks with thousands of nodes. This addresses the state space problem.

1.1.3 Combined Approach

While the two approaches—configuring networks using high-level languages, and ruling

out bugs using automated verification tools—can be applied independently, significant

synergies can be obtained by combining them. NetKAT [6] is a system that follows

this combined approach: the NetKAT language serves both as a programming language

(Chapter 2) and as a verification language [6, 45]. Verification properties are encoded as

equivalences between programs; such equivalences can then be established manually

using NetKAT’s equational axioms, or algorithmically using NetKAT’s decision procedure.

Such an approach requires the codesign of the language and its associated reason-

ing framework. In the case of NetKAT, this was accomplished by building on Kleene

Algebra with Tests (KAT), a (co)algebraic reasoning and programming framework whose

metatheory has been carefully and extensively studied in the literature. KAT enjoys a

sound and complete equational axiomatization, and a decision procedure for program

equivalence based on automata and language models for KAT.

In Chapter 5, we study a variation on KAT called Guarded Kleene Algebra with

Tests (GKAT) that addresses two issues arising when using KAT as a foundation for

network programming languages. First, KAT is not a suitable foundation for probabilistic

languages (as considered in Chapters 3 and 4) due to well-known issues that arise when

combining non-deterministic and probabilistic choice. Second, KAT’s decision procedure

is PSPACE hard. We show that GKAT can model probabilistic languages and permits

an almost linear-time decision procedure. We hope that GKAT will serve as an efficient

6



foundation for future language/verification codesigns, for networks and beyond.

1.2 Contributions

In summary, this dissertation makes the following contributions:

• We propose novel algorithms for compiling a high-level network programming

language to low-level forwarding tables that can be installed on programmable

switches, and introduce a symbolic data structure that makes compilation efficient

in practice (Chapter 2).

• We develop the denotational semantics of a probabilistic network programming

and verification language, show that it is amenable to monotone approximation,

and prototype a simple verification tool with formal convergence guarantees based

on this foundation (Chapter 3).

• We build a scalable verification tool for probabilistic networks that can reason

about probabilistic properties such as fault-tolerance, scaling to large, real-world

networks (Chapter 4).

• We develop a (co)algebraic verification framework with a linear-time decision

procedure and a sound and complete axiomatization, and show that it soundly

models relational and probabilistic programming languages (Chapter 5).

1.3 Acknowledgments

This dissertation includes contributions by several coauthors and is based on the following

publications and preprints:

• Chapter 2: Steffen Smolka, Spiros Eliopoulos, Nate Foster, and Arjun Guha. A Fast

Compiler for NetKAT. In ICFP 2015. https://doi.org/10.1145/2784731.2784761.

7

https://doi.org/10.1145/2784731.2784761


• Chapter 3 and Appendix A: Steffen Smolka, Praveen Kumar, Nate Foster, Dexter

Kozen, and Alexandra Silva. Cantor Meets Scott: Semantic Foundations for Proba-

bilistic Networks. In POPL 2017. https://doi.org/10.1145/3009837.3009843.

• Chapter 4 and Appendix B: Steffen Smolka, Praveen Kumar, David M. Kahn,

Nate Foster, Justin Hsu, Dexter Kozen, and Alexandra Silva. Scalable Verification

of Probabilistic Networks. In PLDI 2019. https://doi.org/10.1145/3314221.

3314639.

• Chapter 5 and Appendix C: Steffen Smolka, Nate Foster, Justin Hsu, Tobias

Kappé, Dexter Kozen, and Alexandra Silva. Guarded Kleene Algebra with Tests:

Verification of Uninterpreted Programs in Nearly Linear Time. In POPL 2020. https:

//doi.org/10.1145/3371129.

The paper “A Fast Compiler for NetKAT” was named a 2016 SIGPLAN Research Highlight

and the paper “Guarded Kleene Algebra with Tests” received a Distinguished Paper Award.

8

https://doi.org/10.1145/3009837.3009843
https://doi.org/10.1145/3314221.3314639
https://doi.org/10.1145/3314221.3314639
https://doi.org/10.1145/3371129
https://doi.org/10.1145/3371129


Part I

Deterministic Networks

9





Chapter 2

Compilation

“Modularity based on abstraction is the way things get done.”

—Barbara Liskov

High-level programming languages play a key role in a growing number of networking

platforms, streamlining application development and enabling precise formal reasoning

about network behavior. Unfortunately, current compilers only handle “local” programs

that specify behavior in terms of hop-by-hop forwarding behavior, or modest extensions

such as simple paths. To encode richer “global” behaviors, programmers must add

extra state—something that is tricky to get right and makes programs harder to write

and maintain. Making matters worse, existing compilers can take tens of minutes to

generate the forwarding state for the network, even on relatively small inputs. This

forces programmers to waste time working around performance issues or even revert to

using hardware-level APIs.

This chapter presents a new compiler for the NetKAT language that handles rich fea-

tures including regular paths and virtual networks, and yet is several orders of magnitude

faster than previous compilers. The compiler uses symbolic automata to calculate the

extra state needed to implement “global” programs, and an intermediate representation

based on binary decision diagrams to dramatically improve performance. We describe

11



the design and implementation of three essential compiler stages: from virtual programs

(which specify behavior in terms of virtual topologies) to global programs (which specify

network-wide behavior in terms of physical topologies), from global programs to local

programs (which specify behavior in terms of single-switch behavior), and from local

programs to hardware-level forwarding tables. We present results from experiments

on real-world benchmarks that quantify performance in terms of compilation time and

forwarding table size.

2.1 Introduction

High-level languages are playing a key role in a growing number of networking platforms

being developed in academia and industry. There are many examples: VMware uses

nlog, a declarative language based on Datalog, to implement network virtualization [85];

SDX uses Pyretic to combine programs provided by different participants at Internet

exchange points [58, 116]; PANE uses NetCore to allow end-hosts to participate in

network management decisions [40, 115]; Flowlog offers tierless abstractions based

on Datalog [120]; Maple allows packet-processing functions to be specified directly

in Haskell or Java [174]; OpenDaylight’s group-based policies describe the state of

the network in terms of application-level connectivity requirements [140]; and ONOS

provides an “intent framework” that encodes constraints on end-to-end paths [139].

The details of these languages differ, but they all offer abstractions that enable

thinking about the behavior of a network in terms of high-level constructs such as

packet-processing functions rather than low-level switch configurations. To bridge the

gap between these abstractions and the underlying hardware, the compilers for these

languages map source programs into forwarding rules that can be installed in the

hardware tables maintained by software-defined networking (SDN) switches.

Unfortunately, most compilers for SDN languages only handle “local” programs

12



in which the intended behavior of the network is specified in terms of hop-by-hop

processing on individual switches. A few support richer features such as end-to-end paths

and network virtualization [85, 139, 174], but to the best of our knowledge, no prior

work has presented a complete description of the algorithms one would use to generate

the forwarding state needed to implement these features. For example, although NetKAT

includes primitives that can be used to succinctly specify global behaviors including

regular paths, the existing compiler only handles a local fragment [6]. This means that

programmers can only use a restricted subset that is strictly less expressive than the

full language and must manually manage the state needed to implement network-wide

paths, virtual networks, and other similar features.

Another limitation of current compilers is that they are based on algorithms that

perform poorly at scale. For example, the NetCore, NetKAT, PANE, and Pyretic compilers

use a simple translation to forwarding tables, where primitive constructs are mapped

directly to small tables and other constructs are mapped to algebraic operators on

forwarding tables. This approach quickly becomes impractical as the size of the generated

tables can grow exponentially with the size of the program! This is a problem for

platforms that rely on high-level languages to express control application logic, as a

slow compiler can hinder the ability of the platform to effectively monitor and react to

changing network state.

Indeed, to work around the performance issues in the current Pyretic compiler, the

developers of SDX [58] extended the language in several ways, including adding a new

low-cost composition operator that implements the disjoint union of packet-processing

functions. The idea was that the implementation of the disjoint union operator could use

a linear algorithm that simply concatenates the forwarding tables for each function rather

than using the usual quadratic algorithm that does an all-pairs intersection between

the entries in each table. However, even with this and other optimizations, the Pyretic

13



compiler still took tens of minutes to generate the forwarding state for inputs of modest

size.

Our approach. This chapter presents a new compiler pipeline for NetKAT that han-

dles local programs executing on a single switch, global programs that utilize the full

expressive power of the language, and even programs written against virtual topologies.

The algorithms that make up this pipeline are orders of magnitude faster than previous

approaches—e.g., our system takes two seconds to compile the largest SDX benchmarks,

versus several minutes in Pyretic, and other benchmarks demonstrate that our compiler

is able to handle large inputs far beyond the scope of its competitors.

These results stem from a few key insights. First, to compile local programs, we

exploit a novel intermediate representation based on binary decision diagrams (BDDs).

This representation avoids the combinatorial explosion inherent in approaches based

on forwarding tables and allows our compiler to leverage well-known techniques for

representing and transforming BDDs. Second, to compile global programs, we use a

generalization of symbolic automata [137] to handle the difficult task of generating the

state needed to correctly implement features such as regular forwarding paths. Third, to

compile virtual programs, we exploit the additional expressiveness provided by the global

compiler to translate programs on a virtual topology into programs on the underlying

physical topology.

We have built a full working implementation of our compiler in OCaml, and designed

optimizations that reduce compilation time and the size of the generated forwarding

tables. These optimizations are based on general insights related to BDDs (sharing

common structures, rewriting naive recursive algorithms using dynamic programming,

using heuristic field orderings, etc.) as well as domain-specific insights specific to SDN

(algebraic optimization of NetKAT programs, per-switch specialization, etc.). To evaluate

the performance of our compiler, we present results from experiments run on a variety

14



of benchmarks. These experiments demonstrate that our compiler provides improved

performance, scales to networks with tens of thousands of switches, and easily handles

complex features such as virtualization.

Overall, this chapter makes the following contributions:

• We present the first complete compiler pipeline for NetKAT that translates local,

global, and virtual programs into forwarding tables for SDN switches.

• We develop a generalization of BDDs and show how to implement a local SDN

compiler using this data structure as an intermediate representation.

• We describe compilation algorithms for virtual and global programs based on graph

algorithms and symbolic automata.

• We discuss an implementation in OCaml and develop optimizations that reduce

running time and the size of the generated forwarding tables.

• We conduct experiments that show dramatic improvements over other compilers

on a collection of benchmarks and case studies.

The next section briefly reviews the NetKAT language and discusses some challenges

related to compiling SDN programs, to set the stage for the results described in the

following sections.

2.2 Overview

NetKAT is a domain-specific language for specifying and reasoning about networks [6,

45]. It offers primitives for matching and modifying packet headers, as well combinators

such as union and sequential composition that merge smaller programs into larger

ones. NetKAT is based on a solid mathematical foundation, Kleene Algebra with Tests

(KAT) [90], and comes equipped with an equational reasoning system that can be used

to automatically verify many properties of programs [45].

15



Syntax

Naturals n ::= 0 | 1 | 2 | . . .
Fields f ::= f1 | · · · | fk

Packets π ::= {f1 = n1, · · · , fk = nk}
Histories h ::= ⟨π⟩ | π::h

Predicates t, u ::= skip Identity
| drop Drop
| f =n Test
| t + u Disjunction
| t · u Conjunction
| ¬t Negation

Programs p, q ::= t Filter
| f �n Modification
| p + q Union
| p · q Sequencing
| p∗ Iteration
| dup Duplication

Semantics

JpK ∈ H→ 2H

JskipK(h) := {h}
JdropK(h) := {}

Jf =nK(π::h) :=
{
{π::h} if π.f = n
{} if π.f ̸= n

J¬tK(h) := {h} \ JtK(h)
Jf �nK(π::h) := {π[f :=n]::h}

Jp + qK(h) := JpK(h) ∪ JqK(h)
Jp · qK(h) := (JpK • JqK)(h)

Jp∗K(h) :=
⋃

i F
i(h)

where F 0(h) := {h}
and F i+1(h) := (JpK • F i)(h)

JdupK(π::h) := {π::π::h}

Figure 2.1: NetKAT syntax and semantics.

NetKAT enables programmers to think in terms of functions on packets histories,

where a packet (π) is a record of fields and a history (h) is a non-empty list of packets.

This is a dramatic departure from hardware-level APIs such as OpenFlow, which require

thinking about low-level details such as forwarding table rules, matches, priorities,

actions, timeouts, etc. NetKAT fields f include standard packet headers such as Ethernet

source and destination addresses, VLAN tags, etc., as well as special fields to indicate the

port (pt) and switch (sw) where the packet is located in the network. For brevity, we

use src and dst fields in examples, though our compiler implements all of the standard

fields supported by OpenFlow [113].

NetKAT syntax and semantics. Formally, NetKAT is defined by the syntax and seman-

tics given in Figure 2.1. Predicates t describe logical predicates on packets and include

primitive tests f=n, which check whether field f is equal to n, as well as the standard

collection of boolean operators. This exposition focuses on tests that match fields exactly,

16



although our implementation supports generalized tests, such as IP prefix matches.

Programs p can be understood as packet-processing functions that consume a packet

history and produce a set of packet histories. Filters t drop packets that do not satisfy

t; modifications f�n update the f field to n; unions p + q copy the input packet and

process one copy using p, the other copy using q, and take the union of the results;

sequences p · q process the input packet using p and then feed each output of p into q

(the • operator is Kleisli composition); iterations p∗ behave like the union of p composed

with itself zero or more times; and dups extend the trajectory recorded in the packet

history by one hop.

Topology encoding. Readers who are familiar with Frenetic [43], Pyretic [116], or

NetCore [115], will be familiar with the basic details of this functional packet-processing

model. However, unlike these languages, NetKAT can also model the behavior of the

entire network, including its topology. For example, a (unidirectional) link from port pt1

on switch sw1 to port pt2 on switch sw2, can be encoded in NetKAT as follows:

dup · sw=sw1 · pt=pt1 · sw�sw2 · pt�pt2 · dup

Applying this pattern, the entire topology can be encoded as a union of links. Throughout

this chapter, we will use the shorthand [sw1:pt1]_[sw2:pt2] to indicate links, and assume

that dup and modifications to the switch field occur only in links.

Local programs. Since NetKAT can encode both the network topology and the behavior

of switches, a NetKAT program describes the end-to-end behavior of a network. One

simple way to write NetKAT programs is to define predicates that describe where packets

enter (in) and exit (out) the network, and interleave steps of processing on switches (p)

and topology (t):

in · (p · t)∗ · p · out

17



To execute the program, only p needs to be specified—the physical topology implements

in, t, and out. Because no switch modifications or dups occur in p, it can be directly

compiled to a collection of forwarding tables, one for each switch. Provided the physical

topology is faithful to the encoding specified by in, t, and out, a network of switches

populated with these forwarding tables will behave like the above program. We call such

a switch program p a local program because it describes the behavior of the network in

terms of hop-by-hop forwarding steps on individual switches.

Global programs. Because NetKAT is based on Kleene algebra, it includes regular

expressions, which are a natural and expressive formalism for describing paths through

a network. Ideally, programmers would be able to use regular expressions to construct

forwarding paths directly, without having to worry about how those paths were imple-

mented. For example, a programmer might write the following to forward packets from

port 1 on switch sw1 to port 1 on switch sw2, and from port 2 on sw1 to port 2 on sw2,

assuming a link connecting the two switches on port 3:

pt=1 · pt�3 · [sw1:3]_[sw2:3] · pt�1

+ pt=2 · pt�3 · [sw1:3]_[sw2:3] · pt�2

Note that this is not a local program, since is not written in the general form given

above and instead combines switch processing and topology processing using a particular

combination of union and sequential composition to describe a pair of overlapping

forwarding paths. To express the same behavior as a local NetKAT program or in a

language such as Pyretic, we would have to somehow write a single program that

specifies the processing that should be done at each intermediate step. The challenge is

that when sw2 receives a packet from sw1, it needs to determine if that packet originated

at port 1 or 2 of sw1, but this can’t be done without extra information. For example,

the compiler could add a tag to packets at sw1 to track the original ingress and use this

information to determine the processing at sw2. In general, the expressiveness of global

18



programs creates challenges for the compiler, which must generate explicit code to create

and manipulate tags. These challenges have not been met in previous work on NetKAT

or other SDN languages.

Virtual programs. Going a step further, NetKAT can also be used to specify behavior

in terms of virtual topologies. To see why this is a useful abstraction, suppose that we

wish to implement point-to-point connectivity between a given pair of hosts in a network

with dozens of switches. One could write a global program that explicitly forwards

along the path between these hosts. But this would be tedious for the programmer, since

they would have to enumerate all of the intermediate switches along the path. A better

approach is to express the program in terms of a virtual “big switch” topology whose

ports are directly connected to the hosts, and where the relationship between ports in

the virtual and physical networks is specified by an explicit mapping—e.g., the top of

Figure 2.2 depicts a big switch virtual topology. The desired functionality could then be

specified using a simple local program that forwards in both directions between ports on

the single virtual switch:

p := (pt=1 · pt�2) + (pt=2 · pt�1)

This one-switch virtual program is evidently much easier to write than a program that

has to reference dozens of switches. In addition, the program is robust to changes in

the underlying network. If the operator adds new switches to the network or removes

switches for maintenance, the program remains valid and does not need to be rewritten.

In fact, this program could be ported to a completely different physical network too,

provided it is able to implement the same virtual topology.

Another feature of virtualization is that the physical-virtual mapping can limit access

to certain switches, ports, and even packets that match certain predicates, providing

a simple form of language-based isolation [59]. In this example, suppose the physical

19



network has hundreds of connected hosts. Yet, since the virtual-physical mapping only

exposes two ports, the abstraction guarantees that the virtual program is isolated from

the hosts connected to the other ports. Moreover, we can run several isolated virtual

networks on the same physical network, e.g., to provide different services to different

customers in multi-tenant datacenters [85].

Of course, while virtual programs are a powerful abstraction, they create additional

challenges for the compiler since it must generate physical paths that implement for-

warding between virtual ports and also instrument programs with extra bookkeeping

information to keep track of the locations of virtual packets traversing the physical

network. Although virtualization has been extensively studied in the networking commu-

nity [5, 23, 85, 116], no previous work fully describes how to compile virtual programs.

Compilation pipeline. This chapter presents new algorithms for compiling NetKAT

that address the key challenges related to expressiveness and performance just discussed.

Figure 2.2 depicts the overall architecture of our compiler, which is structured as a

pipeline with several smaller stages: (i) a virtual compiler that takes as input a virtual

program v, a virtual topology, and a mapping that specifies the relationship between the

virtual and physical topology, and emits a global program that uses a fabric to transit

between virtual ports using physical paths; (ii) a global compiler that takes an arbitrary

NetKAT program g as input and emits a local program that has been instrumented

with extra state to keep track of the execution of the global program; and a (iii) local

compiler that takes a local program p as input and generates OpenFlow forwarding tables,

using a generalization of binary decision diagrams as an intermediate representation.

Overall, our compiler automatically generates the extra state needed to implement virtual

and global programs, with performance that is dramatically faster than current SDN

compilers.

These three stages are designed to work well together—e.g., the fabric constructed

20



v

g

Topology
Mapping

Virtual
Program

Virtual
Fabric

Global
Program

p
Local

ProgramPhysical
Topology

Forwarding
Decision
Diagram

OpenFlow
Forwarding

Tables

dst=10.0.0.1

dst=10.0.0.2

port:=1port:=2false

* Drop

src=10.0.0.2 Fwd82

src=10.0.0.1

Pattern
Fwd81

Action

* Drop

src=10.0.0.2 Fwd82

src=10.0.0.1

Pattern
Fwd81

Action

* Drop

dst=10.0.0.2 Fwd82

dst=10.0.0.1

Pattern
Fwd81

Action

Figure 2.2: NetKAT compiler pipeline.

by the virtual compiler is expressed in terms of regular paths, which are translated to

local programs by the global compiler, and the local and global compilers both use FDDs

as an intermediate representation. However, the individual compiler stages can also be

used independently. For example, the global compiler provides a general mechanism

for compiling forwarding paths specified using regular expressions to SDN switches.

We have also been working with the developers of Pyretic to improve performance by

retargeting its backend to use our local compiler.

The next few sections present these stages in detail, starting with local compilation

21



and building up to global and virtual compilation.

2.3 Local Compilation

The foundation of our compiler pipeline is a translation that maps local NetKAT programs

to OpenFlow forwarding tables. Recall that a local program describes the hop-by-hop

behavior of individual switches—i.e. it does not contain dup or switch modifications.

Compilation via forwarding tables. A simple approach to compiling local programs is

to define a translation that maps primitive constructs to forwarding tables and operators

such as union and sequential composition to functions that implement the analogous

operations on tables. For example, the current NetKAT compiler translates the modifica-

tion pt�2 to a forwarding table with a single rule that sets the port of all packets to 2

(Figure 2.3 (a)), while it translates the predicate dst=A to a flow table with two rules:

the first matches packets where dst=A and leaves them unchanged and the second

matches all other packets and drops them (Figure 2.3 (b)).

To compile the sequential composition of these programs, the compiler combines

each row in the first table with the entire second table, retaining rules that could apply

to packets produced by the row (Figure 2.3 (c)). In the example, the second table has

a single rule that sends all packets to port 2. The first rule of the first table matches

packets with destination A, thus the second table is transformed to only send packets

with destination A to port 2. However, the second rule of the first table drops all packets,

therefore no packets ever reach the second table from this rule.

To compile a union, the compiler computes the pairwise intersection of all patterns

to account for packets that may match both tables. For example, in Figure 2.3 (d), the

two sub-programs forward traffic to hosts A and B based on the dst header. These

two sub-programs do not overlap with each other, which is why the table in the figure

22



Pattern Action
∗ pt�2

polA := pt�2

(a) An atomic modification

Pattern Action
dst=A skip
∗ drop

polB := dst=A

(b) An atomic predicate

Pattern Action
dst=A pt�2
∗ drop

polB · polA

(c) Forwarding to a single host

Pattern Action
dst=A pt�1
dst=B pt�2
∗ drop

polD :=
dst=A · pt�1+

dst=B · pt�2

(d) Forwarding traffic to two hosts

Pattern Action
dst=A pt�3
proto=ssh pt�3
∗ drop

polE :=

(
proto=ssh

+ dst=A

)
· pt�3

(e) Monitoring SSH traffic and traffic to host A

Figure 2.3: Compiling using forwarding tables.

appears simple. However, in general, the two programs may overlap. Consider compiling

the union of the forwarding program, in Figure 2.3 (d) and the monitoring program in

Figure 2.3 (e). The monitoring program sends SSH packets and packets with dst=A to

port 3. The intersection will need to consider all interactions between pairs of rules—an

O(n2) operation. Since a NetKAT program may be built out of several nested programs

and compilation is quadratic at each step, we can easily get a tower of squares or

exponential behavior.

Approaches based on flow tables are attractive for their simplicity, but they suffer

several serious limitations. One issue is that tables are not an efficient way to represent

packet-processing functions since each rule in a table can only encode positive tests on

packet headers. In general, the compiler must emit sequences of prioritized rules to

23



encode operators such as negation or union. Moreover, the algorithms that implement

these operators are worst-case quadratic, which can cause the compiler to become a

bottleneck on large inputs. Another issue is that there are generally many equivalent

ways to encode the same packet-processing function as a forwarding table. This means

that a straightforward computation of fixed-points, as is needed to implement Kleene

star, is not guaranteed to terminate.

Binary decision diagrams. To avoid these issues, our compiler is based on a novel

representation of packet-forwarding functions using a generalization of binary decision

diagrams (BDDs) [2, 21]. To briefly review, a BDD is a data structure that encodes

a boolean function as a directed acyclic graph. The interior nodes encode boolean

variables and have two outgoing edges: a true edge drawn as a solid line, and a false

edge drawn as a dashed line. The leaf nodes encode constant values true or false.

Given an assignment to the variables, we can evaluate the expression by following the

appropriate edges in the graph. An ordered BDD imposes a total order in which the

variables are visited. In general, the choice of variable-order can have a dramatic effect

on the size of a BDD and hence on the run-time of BDD-manipulating operations. Picking

an optimal variable-order is NP-hard, but efficient heuristics often work well in practice.

A reduced BDD has no isomorphic subgraphs and every interior node has two distinct

successors. A BDD can be reduced by repeatedly applying these two transformations:

• If two subgraphs are isomorphic, delete one by connecting its incoming edges to

the isomorphic nodes in the other, thereby sharing a single copy of the subgraph.

• If both outgoing edges of an interior node lead to the same successor, eliminate the

interior node by connecting its incoming edges directly to the common successor

node.

24



Logically, an interior node can be thought of as representing an IF-THEN-ELSE expression.1

For example, the expression:

(a ? (c ? 1 : (d ? 1 : 0)) : (b ? (c ? 1 : (d ? 1 : 0)) : 0))

represents a BDD for the boolean expression (a∨b)∧(c∨d). This notation makes the logical

structure of the BDD clear while abstracting away from the sharing in the underlying

graph representation and is convenient for defining BDD-manipulating algorithms.

In principle, we could use BDDs to directly encode NetKAT programs as follows.

We would treat packet headers as flat, n-bit vectors and encode NetKAT predicates as

n-variable BDDs. Since NetKAT programs produce sets of packets, we could represent

them in a relational style using BDDs with 2n variables. However, there are two issues

with this representation:

• Typical NetKAT programs modify only a few headers and leave the rest unchanged.

The BDD that represents such a program would have to encode the identity relation

between most of its input-output variables. Encoding the identity relation with

BDDs requires a linear amount of space, so even trivial programs, such as the

identity program, would require large BDDs.

• The final step of compilation needs to produce a prioritized flow table. It is not

clear how to efficiently translate BDDs that represent NetKAT programs as relations

into tables that represent packet-processing functions. For example, a table of

length one is sufficient to represent the identity program, but to generate this table

from the BDD sketched above, several paths would have to be compressed into a

single rule.

Forwarding Decision Diagrams. To encode NetKAT programs as decision diagrams,

we introduce a modest generalization of BDDs called forwarding decision diagrams
1We write conditionals as (a ? b : c), in the style of the C ternary operator.

25



proto=http

dst=10.0.0.1

dst=10.0.0.2

pt�1pt�2drop

(a) proto ⊏ dst.

dst=10.0.0.1

dst=10.0.0.2

proto=http

pt�1pt�2drop

(b) dst ⊏ proto.

Figure 2.4: Two ordered FDDs for the same program.

(FDDs). An FDD differs from BDDs in two ways. First, interior nodes match header fields

instead of individual bits, which means we need far fewer variables compared to a BDD

to represent the same program. Our FDD implementation requires 12 variables (because

OpenFlow supports 12 headers), but these headers span over 200 bits. Second, leaf nodes

in an FDD directly encode packet modifications instead of boolean values. Hence, FDDs

do not encode programs in a relational style.

Figures 2.4a and 2.4b show FDDs for a program that forwards HTTP packets to

hosts 10.0.0.1 and 10.0.0.2 at ports 1 and 2 respectively. The diagrams have interior nodes

that match on headers and leaf nodes corresponding to the actions used in the program.

To generalize ordered BDDs to FDDs, we assume orderings on fields and values,

both written ⊏, and lift them to tests f =n lexicographically:

f1=n1 ⊏ f2=n2 := (f1 ⊏ f2) ∨ (f1 = f2 ∧ n1 ⊏ n2)

We require that tests be arranged in ascending order from the root. For reduced FDDs, we

stipulate that they must have no isomorphic subgraphs and that each interior node must

have two unique successors, as with BDDs, and we also require that the FDD must not

contain redundant tests and modifications. For example, if the test dst=10.0.0.1 is true,

then dst=10.0.0.2 must be false. Accordingly, an FDD should not perform the latter test

if the former succeeds. Similarly, because NetKAT’s union operator (p + q) is associative,

26



Syntax

Booleans b ::= ⊤ | ⊥
Contexts Γ ::= · | Γ, (f, n) : b

Actions a ::= {f1�n1, . . . , fk�nk}
Diagrams d ::= {a1, . . . , ak} constant

| (f =n ? d1 : d2) conditional

Semantics

J{f1�n1, . . . , fk�nk}K (π::h) :=
{π[f1:=n1] · · · [fk:=nk]::h}

J{a1, . . . , ak}K (π::h) :=
Ja1K (π::h) ∪ . . . ∪ JakK (π::h)

J(f =n ? d1 : d2)K (π::h) :=Jd1K (π::h) if π.f = n

Jd2K (π::h) if π.f ̸= n

Well Formedness

Γ ⊏ (f, n)
· ⊏ (f , n)

NIL

f ′ ⊏ f

Γ, (f ′, n′) : b′ ⊏ (f , n)
LT

f ′ = f n′ ⊏ n

Γ, (f ′, n′) : ⊥ ⊏ (f , n)
EQ

Γ ⊢ d
Γ ⊢ {a1, . . . , ak}

CONSTANT

Γ ⊏ (f , n)
Γ, (f , n) : ⊤ ⊢ d1
Γ, (f , n) : ⊥ ⊢ d2

Γ ⊢ (f =n ? d1 : d2)
CONDITIONAL

Figure 2.5: Forwarding decision diagrams: syntax, semantics, and well formedness.

commutative, and idempotent, to broadcast packets to both ports 1 and 2 we could

either write pt�1 + pt�2 or pt�2 + pt�1. Likewise, repeated modifications to the

same header are equivalent to just the final modification, and modifications to different

headers commute. Hence, updating the dst header to 10.0.0.1 and then immediately

re-updating it to 10.0.0.2 is the same as updating it to 10.0.0.2. In our implementation, we

enforce the conditions for ordered, reduced FDDs by representing actions as sets of sets

of modifications, and by using smart constructors that eliminate isomorphic subgraphs

and contradictory tests.

Figure 2.5 summarizes the syntax, semantics, and well-formedness conditions for

FDDs formally. Syntactically, an FDD d is either a constant diagram specified by a set of

actions {a1, . . . , ak}, where an action a is a finite map {f1�n1, . . . , fk�nk} from fields to

values such that each field occurs at most once; or a conditional diagram (f =n ? d1 : d2)

specified by a test f =n and two sub-diagrams. Semantically, an action a denotes a

27



LJdropK := {} LJf �nK := {{f �n}}
LJskipK := {{}} LJf =nK := (f =n ? {{}} : {})
LJ¬pK := ¬LJpK LJp1 + p2K := LJp1K⊕ LJp2K
LJp∗K := LJpK⊛ LJp1 · p2K := LJp1K⊙ LJp2K

Figure 2.6: Local compilation to FDDs.

sequence of modifications, a constant diagram {a1, . . . , ak} denotes the union of the

individual actions, and a conditional diagram (f =n ? d1 : d2) tests if the packet satisfies

the test and evaluates the true branch (d1) or false branch (d2) accordingly. The well-

formedness judgments Γ ⊏ (f, n) and Γ ⊢ d ensure that tests appear in ascending order

and do not contradict previous tests to the same field. The context Γ keeps track of

previous tests and boolean outcomes.

Local compiler. Now we are ready to present the local compiler itself, which goes

in two stages. The first stage translates NetKAT source programs into FDDs, using the

simple recursive translation given in Figures 2.7 and 2.6; the second stage converts FDDs

to forwarding tables.

The NetKAT primitives skip, drop, and f �n all compile to simple constant FDDs.

Note that the empty action set {} drops all packets while the singleton action set {{}}

containing the identity action {} copies packets verbatim. NetKAT tests f =n compile to

a conditional whose branches are the constant diagrams for skip and drop respectively.

NetKAT union, sequence, negation, and star all recursively compile their sub-programs

and combine the results using corresponding operations on FDDs, which are given in

Figure 2.7.

The FDD union operator (d1 ⊕ d2) walks down the structure of d1 and d2 and takes

the union of the action sets at the leaves. However, the definition is a bit involved as

some care is needed to preserve well-formedness. In particular, when combining multiple

28



d1 ⊕ d2 (omitting symmetric cases)

{a11, . . . , a1m} ⊕ {a21, . . . , a2n} := {a11, . . . , a1m} ∪ {a21, . . . , a2n}

(f =n ? d11 : d12)⊕ {a21, . . . a2n} := (f =n ? d11 ⊕ {a21, . . . a2n} : d12 ⊕ {a21, . . . a2n})

(f1=n1 ? d11 : d12)⊕ (f2=n2 ? d21 : d22) :=
(f1=n1 ? d11 ⊕ d21 : d12 ⊕ d22) if f1 = f2 ∧ n1 = n2

(f1=n1 ? d11 ⊕ d22 : d12 ⊕ (f2=n2 ? d21 : d22)) if f1 = f2 ∧ n1 ⊏ n2

(f1=n1 ? d11 ⊕ (f2=n2 ? d21 : d22) : d12 ⊕ (f2=n2 ? d21 : d22)) if f1 ⊏ f2

d |f=n {a1, . . . , ak}|f=n := (f =n ? {a1, . . . , ak} : {})

(f1=n1 ? d11 : d12) |f=n :=



(f =n ? d11 : {}) if f = f1 ∧ n = n1

(d12) |f=n if f = f1 ∧ n ̸= n1

(f =n ? (f1=n1 ? d11 : d12) : {}) if f ⊏ f1

(f1=n1 ? (d11) |f=n : (d12) |f=n) if f1 ⊏ f

d1 ⊙ d2 a⊙ {a1, . . . , ak} := {a⊙ a1, . . . , a⊙ ak}

a⊙ (f =n ? d1 : d2) :=


a⊙ d1 if f �n ∈ a

a⊙ d2 if f �n′ ∈ a ∧ n′ ̸= n

(f =n ? a⊙ d1 : a⊙ d2) otherwise
{a1, . . . , ak} ⊙ d := (a1 ⊙ d)⊕ . . .⊕ (ak ⊙ d)

(f =n ? d11 : d12)⊙ d2 := (d11 ⊙ d2) |f=n ⊕(d12 ⊙ d2) |f ̸=n

¬d ¬{} := {{}}
¬{a1, . . . , ak} := {} for k ≥ 1

¬(f =n ? d1 : d2) := (f =n ?¬d1 :¬d2)

d⊛

d⊛ := fix (λd0. {{}} ⊕ d⊙ d0)

Figure 2.7: Auxiliary definitions for local compilation to FDDs.

29



conditional diagrams into one, one must ensure that the ordering on tests is respected

and that the final diagram does not contain contradictions. Readers familiar with BDDs

may notice that this function is simply the standard “apply” operation (instantiated

with union at the leaves). The sequential composition operator (d1 ⊙ d2) merges two

packet-processing functions into a single function. It uses auxiliary operations d |f=n

and d |f ̸=n to restrict a diagram d by a positive or negative test respectively. We elide

the sequence operator on atomic actions (which behaves like a right-biased merge of

finite maps) and the negative restriction operator (which is similar to positive restriction,

but not identical due to contradictory tests) to save space. The first few cases of the

sequence operator handle situations where a single action on the left is composed with

a diagram on the right. When the diagram on the right is a conditional, (f =n ? d1 : d2),

we partially evaluate the test using the modifications contained in the action on the left.

For example, if the left-action contains the modification f �n, we know that the test will

be true, whereas if the left-action modifies the field to another value, we know the test

will be false. The case that handles sequential composition of a conditional diagram on

the left is also interesting. It uses restriction and union to implement the composition,

reordering and removing contradictory tests as needed to ensure well formedness. The

negation ¬d operator is defined in the obvious way. Note that because negation can only

be applied to predicates, the leaves of the diagram d are either {} or {{}}. Finally, the

FDD Kleene star operator d⊛ is defined using a straightforward fixed-point computation.

The well-formedness conditions on FDDs ensures that a fixed point exists.

The soundness of local compilation from NetKAT programs to FDDs is captured by

the following theorem:

Theorem 2.3.1 (Local Soundness). If LJpK = d then JpK(h) = JdK(h).

Proof. Straightforward induction on p.

The second stage of local compilation converts FDDs to forwarding tables. By design,

30



proto=http

dst=10.0.0.1

dst=10.0.0.2

pt�1pt�2drop

Pattern Action
proto=http, dst=10.0.0.1 pt�1
proto=http, dst=10.0.0.2 pt�2
proto=http drop
∗ drop

Figure 2.8: Forwarding table generation example.

this transformation is mostly straightforward: we generate a forwarding rule for every

path from the root to a leaf, using the conjunction of tests along the path as the pattern

and the actions at the leaf. For example, the FDD in Figure 2.8 has four paths from the

root to the leaves so the resulting forwarding table has four rules. The left-most path is

the highest-priority rule and the right-most path is the lowest-priority rule. Traversing

paths from left to right has the effect of traversing true-branches before their associated

false-branches. This makes sense, since the only way to encode a negative predicate is

to partially shadow a negative-rule with a positive-rule. For example, the last rule in

the figure cannot encode the test proto ̸=http. However, since that rule is preceded by

a pattern that tests proto=http, we can reason that the proto field is not HTTP in the

last rule. If performed naively, this strategy could create a lot of extra forwarding rules—

e.g., the table in Figure 2.8 has two drop rules, even though one of them completely

shadows the other. In section 2.6, we discuss optimizations that eliminate redundant

rules, exploiting the FDD representation.

2.4 Global Compilation

Thus far, we have seen how to compile local NetKAT programs into forwarding tables

using FDDs. Now we turn to the global compiler, which translates global programs into

31



equivalent local programs.

In general, the translation from global to local programs requires introducing

extra state, since global programs may use regular expressions to describe end-to-end

forwarding paths—e.g., recall the example of a global program with two overlapping

paths from Section 2.2. Put another way, because a local program does not contain dup,

the compiler can analyze the entire program and generate an equivalent forwarding

table that executes on a single switch, whereas the control flow of a global program must

be made explicit so execution can be distributed across multiple switches. More formally,

a local program encodes a function from packets to sets of packets, whereas a global

program encodes a function from packets to sets of packet-histories.

To generate the extra state needed to encode the control flow of a global, distributed

execution into a local program, the global compiler translates programs into finite state

automata. To a first approximation, the automaton can be thought of as the one for

the regular expression embedded in the global program, and the instrumented local

program can be thought of as encoding the states and transitions of that automaton in a

special header field. The actual construction is a bit more complex for several reasons.

First, we cannot instrument the topology in the same way that we instrument switch

terms. Second, we have to be careful not to introduce extra states that may lead to

duplicate packet histories being generated. Third, NetKAT programs have more structure

than ordinary regular expressions, since they denote functions on packet histories rather

than sets of strings, so a more complicated notion of automaton—a symbolic NetKAT

automaton—is needed.

At a high-level, the global compiler proceeds in several steps:

• It compiles the input program to an equivalent symbolic automaton. All valid paths

through the automaton alternate between switch-processing states and topology-

processing states, which enables executing them as local programs.

32



• It introduces a program counter by instrumenting the automaton to keep track of

the current automaton state in the pc field.

• It determinizes the NetKAT automaton using an analogue of the subset construction

for finite automata.

• It uses heuristic optimizations to reduce the number of states.

• It merges all switch-processing states into a single switch state and all topology-

processing states into a single topology state.

The final result is a single local program that can be compiled using the local compiler.

This program is equivalent to the original global program, modulo the pc field, which

records the automaton state.

2.4.1 NetKAT Automata

In prior work, some of the authors introduced NetKAT automata and proved the analogue

of Kleene’s theorem: programs and automata have the same expressive power [45].

This allows us to use automata as an intermediate representation for arbitrary NetKAT

programs. This section reviews NetKAT automata, which are used in the global compiler,

and then presents a function that constructs an automaton from an arbitrary NetKAT

program.

Definition 2.4.1 (NetKAT Automaton). A NetKAT automaton is a tuple (S, s0, ε, δ), where:

• S is a finite set of states,

• s0 ∈ S is the start state,

• ε : S → Pk→ 2Pk is the observation function, and

• δ : S → Pk→ 2Pk×S is the continuation function.

33



A NetKAT automaton is said to be deterministic if δ maps each packet to a unique next

state at every state, or more formally if

|{s′ : S | (pk′, s′) ∈ δ s pk}| ≤ 1

for all states s and packets pk and pk′.

The inputs to NetKAT automata are guarded strings drawn from the set Pk · (Pk ·

dup)∗ · Pk. That is, the inputs have the form

πin · π1 · dup · π2 · dup · . . . · πn · dup · πout

where n ≥ 0. Intuitively, such strings represent packet-histories through a network: πin

is the input state of a packet, πout is the output state, and the πi are the intermediate

states of the packet that are recorded as it travels through the network.

To process such a string, an automaton in state s can either accept the trace if n = 0

and πout ∈ ε s πin , or it can consume one packet and dup from the start of the string and

transition to state s′ if n > 0 and (pk1, s
′) ∈ δ s πin . In the latter case, the automaton

yields a residual trace:

π1 · π2 · dup · . . . · πn · dup · πout

Note that the “output” π1 of state s becomes the “input” to the successor state s′. More

formally, acceptance is defined as:

accept s (πin · πout) :⇐⇒ πout ∈ ε s πin

accept s (πin · π1 · dup · w) :⇐⇒
∨

(π1,s′)∈ δ s πin

accept s′(π1 · w)

Next, we define a function that builds an automaton A(p) from an arbitrary NetKAT

program p such that

(πout ::πn:: . . . ::⟨π1⟩) ∈ JpK⟨pkin⟩ ⇐⇒ acceptA(p) s0 (πin · π1 · dup · . . . · πout)

34



p EJpK ∈ Pol DJpK ∈ 2Pol×L×Pol

t t ∅
f �n f �n ∅
dupℓ drop {⟨skip, ℓ, skip⟩}
q + r EJqK + EJrK DJqK ∪ DJrK
q · r EJqK · EJrK DJqK · r ∪ EJqK · DJrK
q∗ EJqK∗ EJq∗K · DJqK · q∗

Figure 2.9: Auxiliary definitions for NetKAT automata construction.

The construction is based on Antimirov partial derivatives for regular expressions [8].

We fix a set of labels L, and annotate each occurrence of dup in the source program p

with a unique label ℓ ∈ L. We then define a pair of functions:

EJ−K : Pol→ Pol DJ−K : Pol→ 2Pol×L×Pol

Intuitively, EJpK can be thought of as extracting the local components from p (and will

be used to construct ε), while DJpK extracts the global components (and will be used to

construct δ). A triple ⟨d, ℓ, k⟩ ∈ DJpK represents the derivative of p with respect to dupℓ.

That is, d is the dup-free component of p up to dupℓ, and k is the residual program (or

continuation) of p after dupℓ.

We calculate EJpK and DJpK simultaneously using a simple recursive algorithm

defined in Figure 2.9. The definition makes use of the following abbreviations,

DJpK · q := {⟨d, ℓ, k · q⟩ | ⟨d, ℓ, k⟩ ∈ DJpK}

q · DJpK := {⟨q · d, ℓ, k⟩ | ⟨d, ℓ, k⟩ ∈ DJpK}

which lift sequencing to sets of triples in the obvious way.

The next lemma characterizes EJpK and DJpK, using the following notation to

reconstruct programs from sets of triples:

∑
DJpK :=

∑
⟨d,ℓ,k⟩∈DJpK

d · dup · k

35



Lemma 2.4.2 (Characterization of EJ·K and DJ·K). For all programs p, we have the

following:

(a) p ≡ EJpK +
∑
DJpK.

(b) EJpK is a local program.

(c) For all ⟨d, ℓ, k⟩ ∈ DJpK, d is a local program.

(d) For all labels ℓ in p, there exist unique programs d and k such that ⟨d, ℓ, k⟩ ∈ DJpK.

Proof. By structural induction on p. Claims (b− d) are trivial. Claim (a) can be proved

purely equationally using only the NetKAT axioms and the KAT-DENESTING rule from

[6].

Lemma 2.4.2 (d) allows us to write kℓ to refer to the unique continuation of dupℓ. By

convention, we let k0 denote the “initial continuation,” namely p.

Definition 2.4.3 (Program Automaton). The NetKAT automaton A(p) for a program p is

defined as (S, s0, ε, δ) where

• S is the set of labels occurring in p, plus the initial label 0.

• s0 := 0

• ε ℓ π := {π′ | ⟨pk′⟩ ∈ JEJkℓKK⟨pk⟩}

• δ ℓ π := {(π′, ℓ′) | ⟨d, ℓ′, k⟩ ∈ DJkℓK ∧ ⟨pk′⟩ ∈ JdK⟨pk⟩}

Theorem 2.4.4 (Program Automaton Soundness). For all programs p, packets π and

histories h, we have

h ∈ JpK⟨πin⟩ ⇐⇒ accept s0 (πin · π1 · dup · . . . · πn · dup · πout)

where h = pkout ::pkn:: . . . ::⟨π1⟩.

Proof. We first strengthen the claim, replacing ⟨pkin⟩ with an arbitrary history pkin ::h
′, s0

with an arbitrary label ℓ ∈ S, and p with kℓ. We then proceed by induction on the length

of the history, using Lemma 2.4.2 for the base case and induction step.

36



2.4.2 Local Program Generation

With a NetKAT automaton A(p) for the global program p in hand, we are now ready to

construct a local program. The main idea is to make the state of the global automaton

explicit in the local program by introducing a new header field pc (represented concretely

using VLANs, MPLS tags, or any other unused header field) that keeps track of the state

as the packet traverses the network. This encoding enables simulating the automaton for

the global program using a single local program (along with the physical topology). We

also discuss determinization and optimization, which are important for correctness and

performance.

Program counter. The first step in local program generation is to encode the state of

the automaton into its observation and transition functions using the pc field. To do

this, we use the same structures as are used by the local compiler, FDDs. Recall that the

observation function ε maps input packets to output packets according to EJkℓK, which is

a dup-free NetKAT program. Hence, we can encode the observation function for a given

state ℓ as a conditional FDD that tests whether pc is ℓ and either behaves like the FDD

for EJkℓK or drop. We can encode the continuation function δ as an FDD in a similar

fashion, although we also have to set the pc to each successor state s′. This symbolic

representation of automata using FDDs allows us to efficiently manipulate automata

despite the large size of their “input alphabet”, namely |Pk× Pk|. In our implementation

we introduce the pc field and FDDs on the fly as automata are constructed, rather than

adding them as a post-processing step, as is described here for ease of exposition.

Determinization. The next step in local program generation is to determinize the

NetKAT automaton. This step turns out to be critical for correctness—it eliminates extra

outputs that would be produced if we attempted to directly implement a nondeterministic

37



NetKAT automaton. To see why, consider a program of the form p+p. Intuitively, because

union is an idempotent operation, we expect that this program will behave the same

as just a single copy of p. However, this will not be the case when p contains a dup:

each occurrence of dup will be annotated with a different label. Therefore, when we

instrument the program to track automaton states, it will create two packets that are

identical expect for the pc field, instead of one packet as required by the semantics. The

solution to this problem is simply to determinize the automaton before converting it

to a local program. Determinization ensures that every packet trace induces a unique

path through the automaton and prevents duplicate packets from being produced. Using

FDDs to represent the automaton symbolically is crucial for this step: it allows us to

implement a NetKAT analogue of the subset construction efficiently.

Optimization. One practical issue with building automata using the algorithms de-

scribed so far is that they can use a large number of states—one for each occurrence

of dup in the program—and determinization can increase the number of states by an

exponential factor. Although these automata are not wrong, attempting to compile

them can lead to practical problems since extra states will trigger a proliferation of

forwarding rules that must be installed on switches. Because switches today often have

limited amounts of memory—often only a few thousand forwarding rules—reducing

the number of states is an important optimization. An obvious idea is to optimize the

automaton using (generalizations of) textbook minimization algorithms. Unfortunately

this would be prohibitively expensive since deciding whether two states are equal is a

costly operation in the case of NetKAT automata. Instead, we adopt a simple heuristic

that works well in practice and simply merge states that are identical. In particular, by

representing the observation and transition functions as FDDs, which are hash consed,

testing equality is cheap—simple pointer comparisons.

38



Local Program Extraction. The final step is to extract a local program from the

automaton. Recall from Section 2.2 that, by definition, links are enclosed by dups on

either side, and links are the only NetKAT terms that contain dups or modify the switch

field. It follows that every global program gives rise to a bipartite NetKAT automaton

in which all accepting paths alternate between “switch states” (which do not modify

the switch field) and “link states” (which forward across links and do modify the switch

field), beginning with a switch state. Intuitively, the local program we want to extract is

simply the union of of the ε and δ FDDs of all switch states (recall Lemma 2.4.2 (a)), with

the link states implemented by the physical network. Note however, that the physical

network will neither match on the pc nor advance the pc to the next state (while the

link states in our automaton do). To fix the latter, we observe that any link state has a

unique successor state. We can thus simply advance the pc by two states instead of one

at every switch state, anticipating the missing pc modification in link states. To address

the former, we employ the equivalence

[sw1:pt1]_[sw2:pt2] ≡ sw=1 · pt=1 · t · sw=2 · pt=2

It allows us to replace links with the entire topology if we modify switch states to

match on the appropriate source and destination locations immediately before and after

transitioning across a link. After modifying the ε and δ FDDs accordingly and taking the

union of all switch states as described above, the resulting FDD can be passed to the

local compiler to generate forwarding tables.

The tables will correctly implement the global program provided the physical topol-

ogy (in, t, out) satisfies the following:

• p ≡ in · p · out, i.e. the global program specifies end-to-end forwarding paths

• t implements at least the links used in p.

• t · in ≡ drop ≡ out · t, i.e. the in and out predicates should not include locations

that are internal to the network.

39



2.5 Virtual Compilation

The third and final stage of our compiler pipeline translates virtual programs to physical

programs. Recall that a virtual program is one that is defined over a virtual topology.

Network virtualization can make programs easier to write by abstracting complex physical

topologies to simpler topologies and also makes programs portable across different

physical topologies. It can even be used to multiplex several virtual networks onto a

single physical network—e.g., in multi-tenant datacenters [85].

To compile a virtual program, the compiler needs to know the mapping between

virtual switches, ports, and links and their counterparts at the physical level. The

programmer supplies a virtual program v , a virtual topology t , sets of ingress and egress

locations for t , and a relation R between virtual and physical ports. The relation R

must map each physical ingress to a virtual ingress, and conversely for egresses, but

is otherwise unconstrained—e.g., it need not be injective or even a function.2 The

constraints on ingresses and egresses ensures that each packet entering the physical

network lifts uniquely to a packet in the virtual network, and similarly for packets exiting

the virtual network. During execution of the virtual program, each packet can be thought

of as having two locations, one in the virtual network and one in the physical network; R

defines which pairs of locations are consistent with each other. For simplicity, we assume

the virtual program is a local program. If it is not, the programmer can use the global

compiler to put it into local form.

Overview. To execute a virtual program on a physical network, possibly with a different

underlying topology, the compiler must (i) instrument the program to keep track of

packet locations in the virtual topology and (ii) implement forwarding between locations

2Actually, we can relax this condition slightly and allow physical ingresses to map to zero or one virtual
ingresses—if a physical ingress has no corresponding representative in the virtual network, then packets
arriving at that ingress will not be admitted to the virtual network.

40



that are adjacent in the virtual topology using physical paths. To achieve this, the virtual

compiler proceeds as follows:

1. It instruments the program to use the virtual switch (vsw) and virtual port (vpt)

fields to keep track of the location of the packet in the virtual topology.

2. It constructs a fabric: a NetKAT program that updates the physical location of a

packet when its virtual location changes and vice versa, after each step of processing

to restore consistency with respect to the virtual-physical relation, R.

3. It assembles the final program by combining v with the fabric, eliminating the vsw

and vpt fields, and compiling the result using the global compiler.

Most of the complexity arises in the second step because there may be many valid fabrics

(or there may be none). However, this step is independent of the virtual program. The

fabric can be computed once and for all and then be reused as the program changes.

Fabrics can be generated in several ways—e.g., to minimize a cost function such as path

length or latency, maximize disjointness, etc.

Instrumentation. To keep track of a packet’s location in the virtual network, we

introduce new packet fields vsw and vpt for the virtual switch and the virtual port,

respectively. We replace all occurrences of the sw or pt field in the program v and the

virtual topology t with vsw and vpt respectively using a simple textual substitution.

Packets entering the physical network must be lifted to the virtual network. Hence, we

replace in with a program that matches on all physical ingress locations I and initializes

vsw and vpt in accordance with R:

in ′ :=
∑

(sw ,pt)∈I
(vsw ,vpt) R (sw ,pt)

sw=sw · pt=pt · vsw�vsw · vpt�vpt

Recall that we require R to relate each location in I to at most one virtual ingress, so

the program lifts each packet to at most one ingress location in the virtual network. The

41



V -POL
(vsw , vpt , I)→v (vsw , vpt ′, O)[
(vsw , vpt , I)
(sw, pt, I)

]
→
[
(vsw , vpt ′, O)
(sw, pt, I)

] V -TOPO
(vsw , vpt , O)→v (vsw

′, vpt ′, I)[
(vsw , vpt , O)
(sw, pt, O)

]
→
[
(vsw ′, vpt ′, I)
(sw, pt, O)

]
F -OUT

(sw, pt, I)→+
p (sw′, pt′, O)

(vsw , vpt) R (sw′, pt′)[
(vsw , vpt , O)
(sw, pt, I)

]
→
[
(vsw , vpt , O)
(sw′, pt′, O)

]
F -IN

(sw, pt, O)→+
p (sw′, pt′, I)

(vsw , vpt) R (sw′, pt′)[
(vsw , vpt , I)
(sw, pt, O)

]
→
[
(vsw , vpt , I)
(sw′, pt′, I)

]

F -LOOP-IN
(vsw , vpt) R (sw, pt)[

(vsw , vpt , I)
(sw, pt, O)

]
→
[

(vsw , vpt , I)
(sw, Loop pt, I)

]
F -LOOP-OUT

(sw, pt, O)→∗
p (sw

′, pt′, O)
(vsw , vpt) R (sw′, pt′)[

(vsw , vpt , O)
(sw, Loop pt, I)

]
→
[
(vsw , vpt , O)
(sw′, pt′, O)

]

Figure 2.10: Fabric game graph edges.

Reachable Nodes

(sw, pt) ∈ I
(vsw , vpt) R (sw, pt)[
(vsw , vpt , I)
(sw, pt, I)

]
∈ V

ING

u ∈ V u→ v

v ∈ V
TRANS

Fatal Nodes

v =

[
(vsw , vpt , d1)
(sw, pt, d2)

]
d1 ̸= d2

∀u. v → u =⇒ u is fatal
v is fatal

F -FATAL

v =

[
(vsw , vpt , d1)
(sw, pt, d2)

]
d1 = d2

∃u. v → u ∧ u is fatal
v is fatal

V -FATAL

Figure 2.11: Reachable and fatal nodes.

vsw and vpt fields are only used to track locations during the early stages of virtual

compilation. They are completely eliminated in the final assembly. Hence, we will not

need to introduce additional tags to implement the resulting physical program.

Fabric construction. Each packet can be thought of as having two locations: one

in the virtual topology and one in the underlying physical topology. After executing

in ′, the locations are consistent according to the virtual-physical relation R. However,

42



consistency can be broken after each step of processing using the virtual program v or

virtual topology t. To restore consistency, we construct a fabric comprising programs fin

and fout from the virtual and physical topologies and R, and insert it into the program:

q := in ′ · (v · fout) · (t · fin · v · fout)∗ · out

In this program, v and t alternate with fout and fin in processing packets, thereby

breaking and restoring consistency repeatedly. Intuitively, it is the job of the fabric to

keep the virtual and physical locations in sync.

This process can be viewed as a two-player game between a virtual player V (embod-

ied by v and t) and a fabric player F (embodied by fout and fin). The players take turns

moving a packet across the virtual and the physical topology, respectively. Player V wins

if the fabric player F fails to restore consistency after a finite number of steps; player F

wins otherwise. Constructing a fabric now amounts to finding a winning strategy for F .

We start by building the game graph G = (V,E) modeling all possible ways that

consistency can be broken by V or restored by F . Nodes are pairs of virtual and physical

locations, [lv, lp], where a location is a 3-tuple comprising a switch, a port, and a direction

that indicates if the packet is entering the port (I) or leaving the port (O). The rules in

Figure 2.10 determine the edges of the game graph:

• The edge [lv, lp]→ [l′v, lp] exists if V can move packets from lv to l′v. There are two

ways to do so: either V moves packets across a virtual switch (V -POL) or across a

virtual link (V -TOPO). In the inference rules, we write→v to denote a single hop in

the virtual topology:

(vsw , vpt , d)→v (vsw
′, vpt ′, d′)

If d = I and d′ = O then the hop is across one switch, but if d = O and d′ = I then

the hop is across a link.

• The edge [lv, lp]→ [lv, l
′
p] exists if F can move packets from lp to l′p. When F makes

a move, it must restore physical-virtual consistency (the R relation in the premise

43



of F -POL and F -TOPO). To do so, it may need to take several hops through the

physical network (written as→+
p ).

• In addition, F may leave a packet at their current location, if the location is already

consistent (F -LOOP-IN and F -LOOP-OUT). Note that these force a packet located at

physical location (sw, pt, O) to leave through port pt eventually. Intuitively, once

the fabric has committed to emitting the packet through a given port, it can only

delay but not withdraw that commitment.

Although these rules determine the complete game graph, all packets enter the

network at an ingress location (determined by the in ′ predicate). Therefore, we can

restrict our attention to only those nodes that are reachable from the ingress (reachable

nodes in Figure 2.11). In the resulting graph G = (V,E), every path represents a

possible trajectory that a packet processed by q may take through the virtual and physical

topology.

In addition to removing unreachable nodes, we must remove fatal nodes, which are

the nodes where F is unable to restore consistency and thus loses the game. F -FATAL says

that any state from which F is unable to move to a non-fatal state is fatal. In particular,

this includes states in which F cannot move to any other state at all. V -FATAL says that

any state in which V can move to a fatal state is fatal. Intuitively, we define such states

to be fatal since we want the fabric to work for any virtual program the programmer

may write. Fatal states can be removed using a simple backwards traversal of the graph

starting from nodes without outgoing edges. This process may remove ingress nodes

if they turn out to be fatal. This happens if and only if there exists no fabric that can

always restore consistency for arbitrary virtual programs. Of course, this case can only

arise if the physical topology is not bidirectional.

Fabric selection. If all ingress nodes withstand pruning, the resulting graph encodes

exactly the set of all winning strategies for F , i.e. the set of all possible fabrics. A

44



0

30

60

90

0 20 40 60
Pods

T
im

e 
(s

ec
on

ds
)

(a) Routing on k-pod fat-trees.

0

25

50

75

100

0 10000 20000 30000 40000
Rules

T
im

e 
(s

ec
on

ds
)

Single FDD

Switch Specialization

(b) Destination-based routing on topology
zoo.

2

200

600

200 400 600 800 1000
Prefix Groups

T
im

e 
(s

ec
on

ds
)

FDD 100

FDD 200

FDD 300

SDX 100

SDX 200

SDX 300

(c) Time needed to compile SDX benchmarks.

Figure 2.12: Experimental results: compilation time.

fabric is a subgraph of G that contains the ingress, is closed under all possible moves by

the virtual program, and contains exactly one edge out of every state in which F has

to restore consistency. The F -edges must be labeled with concrete paths through the

physical topology, as there may exist several paths implementing the necessary multi-step

transportation from the source node to the target node.

In general, there may be many fabrics possible and the choice of different F -edges

correspond to fabrics with different characteristics, such as minimizing hop counts,

45



maximizing disjoint paths, and so on. Our compiler implements several simple strategies.

For example, given a metric φ on paths (such as hop count), our greedy strategy starts at

the ingresses and adds a node whenever it is reachable through an edge e rooted at a

node u already selected, and e is (i) any V-player edge or (ii) the F -player edge with

path π minimizing φ among all edges and their paths rooted at u.

After a fabric is selected, it is straightforward to encode it as a NetKAT term. Every

F -edge [lv, lp] → [lv, l
′
p] in the graph is encoded as a NetKAT term that matches on

the locations lv and lp, forwards along the corresponding physical path from lp to l′p,

and then resets the virtual location to lv. Resetting the virtual location is semantically

redundant but will make it easy to eliminate the vsw and vpt fields. We then take fin

to be the union of all F -IN-edges, and fout to be the union of all F -OUT-edges. NetKAT’s

global abstractions play a key role, providing the building blocks for composing multiple

overlapping paths into a unified fabric.

End-to-end Compilation. After the programs in ′, fin , and fout , are calculated from

R, we assemble the physical program q, defined above. However, one last potential

problem remains: although the virtual compiler adds instrumentation to update the

physical switch and port fields, the program still matches and updates the virtual switch

(vsw) and virtual port (vpt). However, note that by construction of q, any match on

the vsw or vpt field is preceded by a modification of those fields on the same physical

switch. Therefore, all matches are automatically eliminated during FDD generation, and

only modifications of the vsw and vpt fields remain. These can be safely erased before

generating flow tables. Intuitively, the program counter inserted into q by the global

compiler plays double-duty to track both the physical location and the virtual location of

a packet. Hence, we only need a single tag to compile virtual programs!

46



0

2

4

6

0.5 0.6 0.7 0.8 0.9 1.0
Compression Ratio

C
ou

nt

(a) Compressing Classbench ACLs.

0

20

40

60

0.9 1.2 1.5 1.8
Size Overhead

C
ou

nt

(b) Table size overhead for global programs.

0

250

500

750

1000

0 20000 40000 60000
Rules

T
im

e 
(s

ec
on

ds
)

(c) Compilation time for global programs.

Figure 2.13: Experimental results: table compression and global compilation.

2.6 Evaluation

To evaluate our compiler, we conducted experiments on a diverse set of real-world

topologies and benchmarks. In practice, our compiler is a module that is used by the

Frenetic SDN controller to map NetKAT programs to flow tables. Whenever network

events occur, e.g., a host connects, a link fails, traffic patterns change, and so on, the

controller may react by generating a new NetKAT program. Since network events may

occur rapidly, a slow compiler can easily be a bottleneck that prevents the controller

47



from reacting quickly to network events. In addition, the flow tables that the compiler

generates must be small enough to fit on the available switches. Moreover, as small

tables can be updated faster than large tables, table size affects the controller’s reaction

time too.

Therefore, in all the following experiments we measure flow-table compilation time

and flow-table size. We apply the compiler to programs for a variety of topologies, from

topology designs for very large datacenters to a dataset of real-world topologies. We

highlight the effect of important optimizations to the fundamental FDD-based algorithms.

We perform all experiments on 32-core, 2.6 GHz Intel Xeon E5-2650 machines with

64GB RAM.3 We repeat all timing experiments ten times and plot their average.

Fat trees. A fat-tree [3] is a modern datacenter network design that uses commodity

switches to minimize cost. It provides several redundant paths between hosts that can

be used to maximize available bandwidth, provide backup paths, and so on. A fat-tree

is organized into pods, where a k-pod fat-tree topology can support up to k3

4
hosts. A

real-world datacenter might have up to 48 pods [3]. Therefore, our compiler should be

able to generate forwarding programs for a 48-pod fat tree relatively quickly.

Figure 2.12a shows how the time needed to generate all flow tables varies with the

number of pods in a fat-tree.4 The graph shows that we take approximately 30 seconds

to produce tables for 48-pod fat trees (i.e., 27,000 hosts) and less than 120 seconds to

generate programs for 60-pod fat trees (i.e., 54,000 hosts).

This experiment shows that the compiler can generate tables for large datacenters.

But, this is partly because the fat-tree forwarding algorithm is topology-dependent and

leverages symmetries to minimize the amount of forwarding rules needed. Many real-

world topologies are not regular and require topology-independent forwarding programs.

3Our compiler is single-threaded and doesn’t leverage multicore.
4This benchmark uses the switch-specialization optimization, which we describe in the next section.

48



In the next section, we demonstrate that our compiler scales well with these topologies

too.

Topology Zoo. The Topology Zoo [82] is a dataset of a few hundred real-world network

topologies of varying size and structure. For every topology in this dataset, we use

destination-based routing to connect all nodes to each other. In destination-based routing,

each switch filters packets by their destination address and forwards them along a

spanning-tree rooted at the destination. Since each switch must be able to forward to

any destination, the total number of rules must be O(n2) for an n-node network.

Figure 2.12b shows how the running time of the compiler varies across the topology

zoo benchmarks. The curves are not as smooth as the curve for fat-trees, since the

complexity of forwarding depends on features of network topology. Since the topology

zoo is so diverse, this is a good suite to exercise the switch specialization optimization

that dramatically reduces compile time.

A direct implementation of the local compiler builds one FDD for the entire network

and uses it to generate flow tables for each switch. However, since several FDD (and

BDD) algorithms are fundamentally quadratic, it helps to first specialize the program

for each switch and then generate a small FDD for each switch in the network (switch

specialization). Building FDDs for several smaller programs is typically much faster than

building a single FDD for the entire network. As the graph shows, this optimization has

a dramatic effect on all but the smallest topologies.

SDX. Our experiments thus far have considered some quite large forwarding programs,

but none of them leverage software-defined networking in any interesting way. In

this section, we report on our performance on benchmarks from a recent SIGCOMM

paper [58] that proposes a new application of SDN.

An Internet exchange point (IXP) is a physical location where networks from several

49



ISPs connect to each other to exchange traffic. Legal contracts between networks are often

implemented by routing programs at IXPs. However, today’s IXPs use baroque protocols

the needlessly limit the kinds of programs that can be implemented. A Software-defined

IXP (an “SDX” [58]) gives participants fine-grained control over packet-processing and

peering using a high-level network programming language. The SDX prototype uses

Pyretic [116] to encode policies and presents several examples that demonstrate the

power of an expressive network programming language.

We build a translator from Pyretic to NetKAT and use it to evaluate our compiler on

SDXs own benchmarks. These benchmarks simulate a large IXP where a few hundred

peers apply programs to several hundred prefix groups. The dashed lines in Figure 2.12c

reproduce a graph from the SDX paper, which shows how compilation time varies with

the number of prefix groups and the number of participants in the SDX.5 The solid lines

show that our compiler is orders of magnitude faster. Pyretic takes over 10 minutes to

compile the largest benchmark, but our compiler only takes two seconds.

Although Pyretic is written in Python, which is a lot slower than OCaml, the main

problem is that Pyretic has a simple table-based compiler that does not scale (Section 2.2).

In fact, the authors of SDX had to add several optimizations to get the graph depicted.

Despite these optimizations, our FDD-based approach is substantially faster.

The SDX paper also reports flow-table sizes for the same benchmark. At first, our

compiler appeared to produce tables that were twice as large as Pyretic. Naturally, we

were unhappy with this result and investigated. Our investigation revealed a bug in the

Pyretic compiler, which would produce incorrect tables that were artificially small. The

authors of SDX have confirmed this bug and it has been fixed in later versions of Pyretic.

We are actively working with them to port SDX to NetKAT to help SDX scale further.

5We get nearly the same numbers as the SDX paper on our hardware.

50



(a) minimum total number of links (b) minimum number of hops

(c) minimum distance

Figure 2.14: Three fabrics optimizing different metrics

Classbench. Lastly, we compile ACLs generated using Classbench [168]. These are real-

istic firewall rules that showcase another optimization: it is often possible to significantly

compress tables by combining and eliminating redundant rules.

We build an optimizer for the flow-table generation algorithm in Figure 2.8. Recall

that that we generate flow-tables by converting every complete path in the FDD into

a rule. Once a path has been traversed, we can remove it from the FDD without

harm. However, naively removing a path may produce an FDD that is not reduced.

Our optimization is simple: we remove paths from the FDD as they are turned into

rules and ensure that the FDD is reduced at each step. When the last path is turned

into a rule, we are left with a trivial FDD. This iterative procedure prevents several

51



unnecessary rules from being generated. It is possible to implement other canonical

optimizations. But, this optimization is unique because it leverages properties of reduced

FDDs. Figure 2.13a shows that this approach can produce 30% fewer rules on average

than a direct implementation of flow-table generation. We do not report running times

for the optimizer, but it is negligible in all our experiments.

Global compiler. The benchmarks discussed so far only use the local compiler. In this

section, we focus on the global compiler. Since the global compiler introduces new

abstractions, we can’t apply it to existing benchmarks, such as SDX, which use local

programs. Instead, we need to build our own benchmark suite of global programs. To

do so, we build a generator that produces global programs that describe paths between

hosts. Again, an n-node topology has O(n2) paths. We apply this generator to the

Topology Zoo, measuring compilation time and table size:

• Compilation time: since the global compiler leverages FDDs, we can expect automa-

ton generation to be fast. However, global compilation involves other steps such as

determinization and localization and their effects on compilation time may matter.

Figure 2.13c shows how compilation time varies with the total number of rules

generated. This graph does grow faster than local compilation time on the same

benchmark (the red, dashed line in Figure 2.12b). Switch-specialization, which

dramatically reduces the size of FDDs and hence compilation time, does not work

on global programs. Therefore, it makes most sense to compare this graph to local

compilation with a single FDD.

• Table size: The global compiler has some optimizations to eliminate unnecessary

states, which produces fewer rules. However, it it does not fully minimize NetKAT

automata thus it may produce more rules than equivalent local programs. Fig-

ure 2.13b shows that on the topology zoo, global routing produces tables that are

no more than twice as large as local routing.

52



We believe these results are promising: we spent a lot of time tuning the local compiler,

but the global compiler is an early prototype with much room for improvement.

Virtualization case study. Finally, we present a small case study that showcases the

virtual compiler on a snapshot of the AT&T backbone network circa 2007–2008. This

network is part of the Topology Zoo and shown in Figure 2.14. We construct a “one big

switch” virtual network and use it to connect five nodes (highlighted in green) to each

other:
5∑

n=1

dst=10.0.0.n · pt�n

To map the virtual network to the physical network, we generate three different fabrics:

(a) a fabric that minimizes the total number of links used across the network, (b) a fabric

that minimizes the number of hops between hosts, and (c) a fabric that minimizes the

physical length of the path between hosts. In the figure, the links utilized by each of

these fabrics is highlighted in red.

The three fabrics give rise to three very different implementations of the same

virtual program. Note that the program and the fabric are completely independent of

each other and can be updated independently. For example, the operator managing

the physical network could change the fabric to implement a new SLA, e.g. move from

minimum-utilization to shortest-paths. This change requires no update to the virtual

program; the network would witness performance improvement for free. Similarly, the

virtual network operator could decide to implement a new firewall policy in the virtual

network or change the forwarding behavior. The old fabric would work seamlessly with

this new virtual program without intervention by the physical network operator. In

principle, our compiler could even be used repeatedly to virtualize virtual networks.

53



2.7 Related Work

A large body of work has explored the design of high-level languages for SDN program-

ming [39, 85, 115, 116, 139, 140, 174]. Our work is unique in its focus on the task of

engineering efficient compilers that scale up to large topologies as well as expressive

global and virtual programs.

An early paper by Monsanto et al. proposed the NetCore language and presented

an algorithm for compiling programs based on forwarding tables [115]. Subsequent

work by Guha et al. developed a verified implementation of NetCore in the Coq proof

assistant [57]. Anderson et al. developed NetKAT as an extension to NetCore and

proposed a compilation algorithm based on manipulating nested conditionals, which

are essentially equivalent to forwarding tables. The correctness of the algorithm was

justified using NetKAT’s equational axioms, but didn’t handle global programs or Kleene

star. Concurrent NetCore [154] grows NetCore with features that target next-generation

SDN-switches. The original Pyretic paper implemented a “reactive microflow interpreter”

and not a compiler [116]. However later work developed a compiler in the style of

NetCore. SDX uses Pyretic to program Internet exchange points [58]. CoVisor develops

incremental algorithms for maintaining forwarding table in the presence of changes

to programs composed using NetCore-like operators [70]. Recent work by Jose et al.

developed a compiler based on integer linear programming for next-generation switches,

each with multiple, programmable forwarding tables [73].

A number of papers in the systems community have proposed mechanisms for im-

plementing virtual network programs. An early workshop paper by Casado proposed

the idea of network virtualization and sketched an implementation strategy based on a

hypervisor [23]. Our virtual compiler extends this basic strategy by introducing a gener-

alized notion of a fabric, developing concrete algorithms for computing and selecting

54



fabrics, and showing how to compose fabrics with virtual programs in the context of a

high-level language. Subsequent work by Koponen et al. described VMware’s NVP plat-

form, which implements hypervisor-based virtualization in multi-tenant datacenters [85].

Pyretic [116], CoVisor [70], and OpenVirteX [5] all support virtualization—the latter at

three different levels of abstraction: topology, address, and control application. However,

none of these papers present a complete description of algorithms for computing the

forwarding state needed to implement virtual networks.

The FDDs used in our local compiler as well as our algorithms for constructing

NetKAT automata are inspired by Pous’s work on symbolic KAT automata [137] and

work by some of the authors on a verification tool for NetKAT [45]. The key differences

between this work and ours is that they focus on verification of programs whereas

we develop compilation algorithms. BDDs have been used for verification for several

decades [2, 21]. In the context of networks, BDDs and BDD-like structures have been

used to optimize access control policies [103], TCAMs [104], and to verify [79] data

plane configurations, but our work is the first to use BDDs to compile network programs.

2.8 Conclusion

This chapter describes the first complete compiler for the NetKAT language. It presents a

suite of tools that leverage BDDs, graph algorithms, and symbolic automata to efficiently

compile programs in the NetKAT language down to compact forwarding tables for SDN

switches. In the future, it would be interesting to investigate whether richer constructs

such as stateful and probabilistic programs can be implemented using our techniques,

how classic algorithms from the automata theory literature can be adapted to optimize

global programs, how incremental algorithms can be incorporated into our compiler, and

how the compiler can assist in performing graceful dynamic updates to network state.

55





Part II

Probabilistic Networks

57





Chapter 3

Semantic Foundations

“Symbols should not be confused with the concepts they denote.”

—Dana Scott

ProbNetKAT is a probabilistic extension of NetKAT with a denotational semantics based on

Markov kernels. The language is expressive enough to generate continuous distributions,

which raises the question of how to compute effectively in the language. This chapter

gives an new characterization of ProbNetKAT’s semantics using domain theory, which

provides the foundation needed to build a practical implementation. We show how to

use the semantics to approximate the behavior of arbitrary ProbNetKAT programs using

distributions with finite support. We develop a prototype implementation and show how

to use it to solve a variety of problems including characterizing the expected congestion

induced by different routing schemes and reasoning probabilistically about reachability

in a network.

3.1 Introduction

The recent emergence of software-defined networking (SDN) has led to the development

of a number of domain-specific programming languages [43, 116, 120, 174] and reason-

59



ing tools [6, 45, 77, 79] for networks. But there is still a large gap between the models

provided by these languages and the realities of modern networks. In particular, most ex-

isting SDN languages have semantics based on deterministic packet-processing functions,

which makes it impossible to encode probabilistic behaviors. This is unfortunate because

in the real world, network operators often use randomized protocols and probabilistic

reasoning to achieve good performance.

Previous work on ProbNetKAT [44] proposed an extension to the NetKAT lan-

guage [6, 45] with a random choice operator that can be used to express a variety

of probabilistic behaviors. ProbNetKAT has a compositional semantics based on Markov

kernels that conservatively extends the deterministic NetKAT semantics and has been

used to reason about various aspects of network performance including congestion, fault

tolerance, and latency. However, although the language enjoys a number of attractive

theoretical properties, there are some major impediments to building a practical imple-

mentation: (i) the semantics of iteration is formulated as an infinite process rather than

a fixpoint in a suitable order, and (ii) some programs generate continuous distributions.

These factors make it difficult to determine when a computation has converged to its final

value, and there are also challenges related to representing and analyzing distributions

with infinite support.

This chapter introduces a new semantics for ProbNetKAT, following the approach

pioneered by Saheb-Djahromi, Jones, and Plotkin [71, 72, 135, 150, 151]. Whereas

the original semantics of ProbNetKAT was somewhat imperative in nature, being based

on stochastic processes, the semantics introduced in this chapter is purely functional.

Nevertheless, the two semantics are closely related—we give a precise, technical char-

acterization of the relationship between them. The new semantics provides a suitable

foundation for building a practical implementation, it provides new insights into the na-

ture of probabilistic behavior in networks, and it opens up several interesting theoretical

60



questions for future work.

Our new semantics follows the order-theoretic tradition established in previous

work on Scott-style domain theory [1, 155]. In particular, Scott-continuous maps on

algebraic and continuous DCPOs both play a key role in our development. However,

there is an interesting twist: NetKAT and ProbNetKAT are not state-based as with most

other probabilistic systems, but are rather throughput-based. A ProbNetKAT program

can be thought of as a filter that takes an input set of packet histories and generates an

output randomly distributed on the measurable space 2H of sets of packet histories. The

closest thing to a “state” is a set of packet histories, and the structure of these sets (e.g.,

the lengths of the histories they contain and the standard subset relation) are important

considerations. Hence, the fundamental domains are not flat domains as in traditional

domain theory, but are instead the DCPO of sets of packet histories ordered by the subset

relation. Another point of departure from prior work is that the structures used in the

semantics are not subprobability distributions, but genuine probability distributions:

with probability 1, some set of packets is output, although it may be the empty set.

It is not obvious that such an order-theoretic semantics should exist at all. Traditional

probability theory does not take order and compositionality as fundamental structuring

principles, but prefers to work in monolithic sample spaces with strong topological

properties such as Polish spaces. Prototypical examples of such spaces are the real line,

Cantor space, and Baire space. The space of sets of packet histories 2H is homeomorphic

to the Cantor space, and this was the guiding principle in the development of the original

ProbNetKAT semantics. Although the Cantor topology enjoys a number of attractive

properties (compactness, metrizability, strong separation) that are lost when shifting

to the Scott topology, the sacrifice is compensated by a more compelling least-fixpoint

characterization of iteration that aligns better with the traditional domain-theoretic

treatment. Intuitively, the key insight that underpins our development is the observation

61



that ProbNetKAT programs are monotone: if a larger set of packet histories is provided

as input, then the likelihood of seeing any particular set of packets as a subset of the

output set can only increase. From this germ of an idea, we formulate an order-theoretic

semantics for ProbNetKAT.

In addition to the strong theoretical motivation for this work, our new semantics

also provides a source of practical useful reasoning techniques, notably in the treatment

of iteration and approximation. The original paper on ProbNetKAT showed that the

Kleene star operator satisfies the usual fixpoint equation P ∗ = skip & P · P ∗, and that

its finite approximants P (n) converge weakly (but not pointwise) to it. However, it was

not characterized as a least fixpoint in any order or as a canonical solution in any sense.

This was a bit unsettling and raised questions as to whether it was the “right” definition—

questions for which there was no obvious answer. This chapter characterizes P ∗ as the

least fixpoint of the Scott-continuous map X 7→ skip& P ·X on a continuous DCPO of

Scott-continuous Markov kernels. This not only corroborates the original definition as

the “right” one, but provides a powerful tool for monotone approximation. Indeed, this

result implies the correctness of our prototype implementation, which we have used to

build and evaluate several applications inspired by common real-world scenarios.

Contributions. This main contributions of this chapter are as follows: (i) we develop

a domain-theoretic foundation for probabilistic network programming, (ii) using this

semantics, we build a prototype implementation of the ProbNetKAT language, and (iii)

we evaluate the applicability of the language on several case studies.

Outline. The paper is structured as follows. In §3.2 we give a high-level overview of

our technical development using a simple running example. In §3.3 we review basic

definitions from domain theory and measure theory. In §3.4 we formalize the syntax and

semantics of ProbNetKAT abstractly in terms of a monad. In §3.5 we prove a general

62



theorem relating the Scott and Cantor topologies on 2H. Although the Scott topology

is much weaker, the two topologies generate the same Borel sets, so the probability

measures are the same in both. We also show that the bases of the two topologies

are related by a countably infinite-dimensional triangular linear system, which can be

viewed as an infinite analog of the inclusion-exclusion principle. The cornerstone of this

result is an extension theorem (Theorem 3.5.4) that determines when a function on the

basic Scott-open sets extends to a measure. In §3.6 we give the new domain-theoretic

semantics for ProbNetKAT in which programs are characterized as Markov kernels that

are Scott-continuous in their first argument. We show that this class of kernels forms a

continuous DCPO, the basis elements being those kernels that drop all but fixed finite

sets of input and output packets. In §3.7 we show that ProbNetKAT’s primitives are

(Scott-)continuous and its program operators preserve continuity. Other operations such

as product and Lebesgue integration are also treated in this framework. In proving

these results, we attempt to reuse general results from domain theory whenever possible,

relying on the specific properties of 2H only when necessary. We supply complete

proofs for folklore results and in cases where we could not find an appropriate original

source. We also show that the two definitions of the Kleene star operator—one in

terms of an infinite stochastic process and one as the least fixpoint of a Scott-continuous

map—coincide. In §3.8 we apply the continuity results from §3.7 to derive monotone

convergence theorems. In §3.9 we describe a prototype implementation based on §3.8

and several applications. In §3.10 we review related work. We conclude in §3.11 by

discussing open problems and future directions.

3.2 Overview

This section provides motivation for the ProbNetKAT language and summarizes our main

results using a simple example.

63



Example. Consider the topology shown in Figure 3.1 and suppose we are asked to im-

plement a routing application that forwards all traffic to its destination while minimizing

congestion, gracefully adapting to shifts in load, and also handling unexpected failures.

This problem is known as traffic engineering in the networking literature and has been

extensively studied [9, 42, 61, 68, 141]. Note that standard shortest-path routing (SPF)

does not solve the problem as stated—in general, it can lead to bottlenecks and also

makes the network vulnerable to failures. For example, consider sending a large amount

of traffic from host h1 to host h3: there are two paths in the topology, one via switch S2

and one via switch S4, but if we only use a single path we sacrifice half of the available

capacity. The most widely-deployed approaches to traffic engineering today are based

on using multiple paths and randomization. For example, Equal Cost Multipath Routing

(ECMP), which is widely supported on commodity routers, selects a least-cost path for

each traffic flow uniformly at random. The intention is to spread the offered load across

a large set of paths, thereby reducing congestion without increasing latency.

ProbNetKAT Language. Using ProbNetKAT, it is straightforward to write a program

that captures the essential behavior of ECMP. We first construct programs that model the

routing tables and topology, and build a program that models the behavior of the entire

network.

Routing: We model the routing tables for the switches using simple ProbNetKAT programs

that match on destination addresses and forward packets on the next hop toward their

destination. To randomly map packets to least-cost paths, we use the choice operator

(⊕). For example, the program for switch S1 in Figure 3.1 is as follows:

p1 := (dst=h1 · pt�1)

& (dst=h2 · pt�2)

& (dst=h3 · (pt�2⊕ pt�4))

& (dst=h4 · pt�4)

64



The programs for other switches are similar. To a first approximation, this program can be

read as a routing table, whose entries are separated by the parallel composition operator

(&). The first entry states that packets whose destination is h1 should be forwarded out

on port 1 (which is directly connected to h1). Likewise, the second entry states that

packets whose destination is host h2 should be forwarded out on port 2, which is the

next hop on the unique shortest path to h2. The third entry, however, is different: it

states that packets whose destination is h3 should be forwarded out on ports 2 and 4 with

equal probability. This divides traffic going to h3 among the clockwise path via S2 and

the counter-clockwise path via S4. The final entry states that packets whose destination

is h4 should be forwarded out on port 4, which is again the next hop on the unique

shortest path to h4. The routing program for the network is the parallel composition of

the programs for each switch:

p := (sw=S1 · p1) & (sw=S2 · p2) & (sw=S3 · p3) & (sw=S4 · p4)

Topology: We model a directed link as a program that matches on the switch and port at

one end of the link and modifies the switch and port to the other end of the link. We

model an undirected link l as a parallel composition of directed links in each direction.

For example, the link between switches S1 and S2 is modeled as follows:

l1,2 := (sw=S1 · pt=2 · dup · sw�S2 · pt�1 · dup)

& (sw=S2 · pt=1 · dup · sw�S1 · pt�2 · dup)

Note that at each hop we use ProbNetKAT’s dup operator to store the headers in the

packet’s history, which records the trajectory of the packet as it goes through the network.

Histories are useful for tasks such as measuring path length and analyzing link congestion.

We model the topology as a parallel composition of individual links:

t := l1,2 & l2,3 & l3,4 & l1,4

65



To delimit the network edge, we define ingress and egress predicates:

in := (sw=1 · pt=1) & (sw=2 · pt=2) & . . .

out := (sw=1 · pt=1) & (sw=2 · pt=2) & . . .

Here, since every ingress is an egress, the predicates are identical.

Network: We model the end-to-end behavior of the entire network by combining p, t, in

and out into a single program:

net := in · (p · t)∗ · p · out

This program models processing each input from ingress to egress across a series of

switches and links. Formally it denotes a Markov kernel that, when supplied with an

input distribution on packet histories µ produces an output distribution ν.

Queries: Having constructed a probabilistic model of the network, we can use standard

tools from measure theory to reason about performance. For example, to compute the

expected congestion on a given link l, we would introduce a function Q from sets of

packets to R ∪ {∞} (formally a random variable):

Q(a) :=
∑
h∈a

#l(h)

where #l(h) is the function on packet histories that returns the number of times that link

l occurs in h, and then compute the expected value of Q using integration:

E
ν
[Q] =

∫
Qdν

We can compute queries that capture other aspects of network performance such as

latency, reliability, etc. in similar fashion.

Limitations. Unfortunately there are several issues with the approach just described:

• One problem is that computing the results of a query can require complicated mea-

sure theory since a ProbNetKAT program may generate a continuous distribution

66



S1 S2

S3S4

h1 h2

h3h4

1 2

34

2 1

3
2

43

1
4

1 2 3 4 5 6
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

M
a
x
 C

o
n
g
e
st

io
n

ECMP

SPF

SPF ECMP
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
h
ro
u
g
h
p
u
t

Figure 3.1: topology, congestion, failure throughput.

in general (Lemma 3.4.3). Formally, instead of summing over the support of the

distribution, we have to use Lebesgue integration in an appropriate measurable

space. Of course, there are also challenges in representing infinite distributions in

an implementation.

• Another issue is that the semantics of iteration is modeled in terms of an infinite

stochastic process rather than a standard fixpoint. The original ProbNetKAT paper

showed that it is possible to approximate a program using a series of star-free

programs that weakly converge to the correct result, but the approximations need

not converge monotonically, which makes this result difficult to apply in practice.

• Even worse, many of the queries that we would like to answer are not actually

continuous in the Cantor topology, meaning that the weak convergence result does

not even apply! The notion of distance on sets of packet histories is d(a, b) = 2−n

where n is the length of the smallest history in a but not in b, or vice versa. It is easy

to construct a sequence of histories hn of length n such that limn→∞ d({hn}, {}) = 0

but limn→∞Q({hn}) =∞ which is not equal to Q({}) = 0.

Together, these issues are significant impediments that make it difficult to apply Prob-

NetKAT in many scenarios.

67



Domain-Theoretic Semantics. This chapter develops a new semantics for ProbNetKAT

that overcomes these problems and provides the key building blocks needed to engineer

a practical implementation. The main insight is that we can formulate the semantics

in terms of the Scott topology rather than the Cantor topology. It turns out that these

two topologies generate the same Borel sets, and the relationship between them can

be characterized using an extension theorem that captures when functions on the basic

Scott-open sets extend to a measure. We show how to construct a DCPO equipped with

a natural partial order that also lifts to a partial order on Markov kernels. We prove that

standard program operators are continuous, which allows us to formulate the semantics

of the language—in particular Kleene star—using standard tools from domain theory,

such as least fixpoints. Finally, we formalize a notion of approximation and prove a

monotone convergence theorem.

The problems with the original ProbNetKAT semantics identified above are all solved

using the new semantics. Because the new semantics models iteration as a least fixpoint,

we can work with finite distributions and star-free approximations that are guaranteed to

monotonically converge to the analytical solution (Corollary 3.8.2). Moreover, whereas

our query Q was not Cantor continuous, it is straightforward to show that it is Scott

continuous. Let A be an increasing chain a0 ⊆ a1 ⊆ a2 ⊆ . . . ordered by inclusion. Scott

continuity requires
⊔

a∈AQ(a) = Q(
⊔
A
)

which is easy to prove. Hence, the convergence

theorem applies and we can compute a monotonically increasing chain of approximations

that converge to Eν [Q].

Implementation and Applications. We developed the first implementation of Prob-

NetKAT using the new semantics. We built an interpreter for the language and im-

plemented a variety of traffic engineering schemes including ECMP, k-shortest path

routing, and oblivious routing [141]. We analyzed the performance of each scheme in

terms of congestion and latency on real-world demands drawn from Internet2’s Abilene

68



backbone, and in the presence of link failures. We showed how to use the language

to reason probabilistically about reachability properties such as loops and black holes.

Figures 3.1 (b-c) depict the expected throughput and maximum congestion when using

shortest paths (SPF) and ECMP on the 4-node topology as computed by our ProbNetKAT

implementation. We set the demand from h1 to h3 to be 1
2

units of traffic, and the demand

between all other pairs of hosts to be 1
8

units. The first graph depicts the maximum

congestion induced under successive approximations of the Kleene star, and shows that

ECMP achieves much better congestion than SPF. With SPF, the most congested link

(from S1 to S2) carries traffic from h1 to h2, from h4 to h2, and from h1 to h3, resulting

in 3
4

total traffic. With ECMP, the same link carries traffic from h1 to h2, half of the

traffic from h2 to h4, half of the traffic from h1 to h3, resulting in 7
16

total traffic. The

second graph depicts the loss of throughput when the same link fails. The total aggregate

demand is 17
8
. With SPF, 3

4
units of traffic are dropped leaving 11

8
units, which is 60% of

the demand, whereas with ECMP only 7
16

units of traffic are dropped leaving 1 7
16

units,

which is 77% of the demand.

3.3 Preliminaries

This section briefly reviews basic concepts from topology, measure theory, and domain

theory, and defines Markov kernels, the objects on which ProbNetKAT’s semantics is based.

For a more detailed account, the reader is invited to consult standard texts [1, 35].

Topology. A topology O ⊆ 2X on a set X is a collection of subsets including X and

∅ that is closed under finite intersection and arbitrary union. A pair (X,O) is called a

topological space and the sets U, V ∈ O are called the open sets of (X,O). A function

f : X → Y between topological spaces (X,OX) and (Y,OY ) is continuous if the preimage

69



of any open set in Y is open in X, i.e. if

f−1(U) = {x ∈ X | f(x) ∈ U} ∈ OX

for any U ∈ OY .

Measure Theory. A σ-algebra F ⊆ 2X on a set X is a collection of subsets including

X that is closed under complement, countable union, and countable intersection. A

measurable space is a pair (X,F). A probability measure µ over such a space is a function

µ : F → [0, 1] that assigns probabilities µ(A) ∈ [0, 1] to the measurable sets A ∈ F , and

satisfies the following conditions:

• µ(X) = 1

• µ(
⋃

i∈I Ai) =
∑

i∈I µ(Ai) whenever {Ai}i∈I is a countable

collection of disjoint measurable sets.

Note that these conditions already imply that µ(∅) = 0. Elements a, b ∈ X are called

points or outcomes, and measurable sets A,B ∈ F are also called events. The σ-algebra

σ(U) generated by a set U ⊆ X is the smallest σ-algebra containing U :

σ(U) :=
⋂
{F ⊆ 2X | F is a σ-algebra and U ⊆ F}.

Note that it is well-defined because the intersection is not empty (2X is trivially a σ-

algebra containing U) and intersections of σ-algebras are again σ-algebras. If O ⊆ 2X

are the open sets of X, then the smallest σ-algebra containing the open sets B = σ(O) is

the Borel algebra, and the measurable sets A,B ∈ B are the Borel sets of X.

Let Pµ := {a ∈ X | µ({a}) > 0} denote the points (not events!) with non-zero

probability. It can be shown that Pµ is countable. A probability measure is called discrete

if µ(Pµ) = 1. Such a measure can simply be represented by a function Pr : X → [0, 1]

with Pr(a) = µ({a}). If |Pµ| < ∞, the measure is called finite and can be represented

70



by a finite map Pr : Pµ → [0, 1]. In contrast, measures for which µ(Pµ) = 0 are called

continuous, and measures for which 0 < µ(Pµ) < 1 are called mixed. The Dirac measure

or point mass puts all probability on a single point a ∈ X: δa(A) = 1 if a ∈ A and 0

otherwise. The uniform distribution on [0, 1] is a continuous measure.

A function f : X → Y between measurable spaces (X,FX) and (Y,FY ) is called

measurable if the preimage of any measurable set in Y is measurable in X, i.e. if

f−1(A) := {x ∈ X | f(x) ∈ A} ∈ FX

for all A ∈ FY . If Y = R∪{−∞,+∞}, then f is called a random variable and its expected

value with respect to a measure µ on X is given by the Lebesgue integral

E
µ
[f ] :=

∫
fdµ =

∫
x∈X

f(x) · µ(dx)

If µ is discrete, the integral simplifies to the sum

E
µ
[f ] =

∑
x∈X

f(x) · µ({x}) =
∑
x∈Pµ

f(x) · Pr(x)

Markov Kernels. Consider a probabilistic transition system with states X that makes

a random transition between states at each step. If X is finite, the system can be

captured by a transition matrix T ∈ [0, 1]X×X , where the matrix entry Txy gives the

probability that the system transitions from state x to state y. Each row Tx describes

the transition function of a state x and must sum to 1. Suppose that the start state is

initially distributed according to the row vector V ∈ [0, 1]X , i.e. the system starts in state

x ∈ X with probability Vx. Then, the state distribution is given by the matrix product

V T ∈ [0, 1]X after one step and by V T n after n steps.

Markov kernels generalize this idea to infinite state systems. Given measurable

spaces (X,FX) and (Y,FY ), a Markov kernel with source X and target Y is a function

P : X × FY → [0, 1] (or equivalently, X → FY → [0, 1]) that maps each source state

x ∈ X to a distribution over target states P (x,−) : FY → [0, 1]. If the initial distribution

71



is given by a measure ν on X, then the target distribution µ after one step is given by

Lebesgue integration:

µ(A) :=

∫
x∈X

P (x,A) · ν(dx) (A ∈ FY ) (3.1)

If ν and P (x,−) are discrete, the integral simplifies to the sum

µ({y}) =
∑
x∈X

P (x, {y}) · ν({x}) (y ∈ Y )

which is just the familiar vector-matrix-product V T . Similarly, two kernels P,Q from X

to Y and from Y to Z, respectively, can be sequentially composed to a kernel P · Q from

X to Z:

(P ·Q)(x,A) :=

∫
y∈Y

P (x, dy) ·Q(y, A) (3.2)

This is the continuous analog of the matrix product TT . A Markov kernel P must satisfy

two conditions:

(i) For each source state x ∈ X, the map A 7→ P (x,A) must be a probability measure

on the target space.

(ii) For each event A ∈ FY in the target space, the map x 7→ P (x,A) must be a

measurable function.

Condition ((ii)) is required to ensure that integration is well-defined. A kernel P is called

deterministic if P (a,−) is a dirac measure for each a.

Domain Theory. A partial order (PO) is a pair (D,⊑) where D is a set and ⊑ is a

reflexive, transitive, and antisymmetric relation on D. For two elements x, y ∈ D we

let x ⊔ y denote their ⊑-least upper bound (i.e., their supremum), provided it exists.

Analogously, the least upper bound of a subset C ⊆ D is denoted
⊔
C, provided it exists.

A non-empty subset C ⊆ D is directed if for any two x, y ∈ C there exists some upper

72



bound x, y ⊑ z in C. A directed complete partial order (DCPO) is a PO for which any

directed subset C ⊆ D has a supremum
⊔
C in D. If a PO has a least element it is

denoted by ⊥, and if it has a greatest element it is denoted by ⊤. For example, the

nonnegative real numbers with infinity R+ := [0,∞] form a DCPO under the natural

order ≤ with suprema
⊔

C = supC, least element ⊥ = 0, and greatest element ⊤ =∞.

The unit interval is a DCPO under the same order, but with ⊤ = 1. Any powerset 2X is a

DCPO under the subset order, with suprema given by union.

A function f from D to E is called (Scott-)continuous if

(i) it is monotone, i.e. x ⊑ y implies f(x) ⊑ f(y), and

(ii) it preserves suprema, i.e. f(
⊔
C) =

⊔
x∈C f(x) for any directed set C in D.

Equivalently, f is continuous with respect to the Scott topologies on D and E [1, Propo-

sition 2.3.4], which we define next. (Note how condition ((ii)) looks like the classical

definition of continuity of a function f , but with suprema taking the role of limits). The

set of all continuous functions f : D → E is denoted [D → E].

A subset A ⊆ D is called up-closed (or an upper set) if a ∈ A and a ⊑ b implies b ∈ A.

The smallest up-closed superset of A is called its up-closure and is denoted A↑. A is called

(Scott-)open if it is up-closed and intersects every directed subset C ⊆ D that satisfies⊔
C ∈ A. For example, the Scott-open sets of R+ are the upper semi-infinite intervals

(r,∞], r ∈ R+. The Scott-open sets form a topology on D called the Scott topology.

DCPOs enjoy many useful closure properties:

(i) The cartesian product of any collection of DCPOs is a DCPO with componentwise

order and suprema.

(ii) If E is a DCPO and D any set, the function space D → E is a DCPO with pointwise

order and suprema.

(iii) The continuous functions [D → E] between DCPOs D and E form a DCPO with

pointwise order and suprema.

73



If D is a DCPO with least element ⊥, then any Scott-continuous self-map f ∈ [D →

D] has a ⊑-least fixpoint, and it is given by the supremum of the chain ⊥ ⊑ f(⊥) ⊑

f(f(⊥)) ⊑ . . . :

lfp(f) =
⊔
n≥0

fn(⊥)

Moreover, the least fixpoint operator, lfp ∈ [[D → D]→ D] is itself continuous, that is:

lfp(
⊔

C) =
⊔

f∈C lfp(f), for any directed set of functions C ⊆ [D → D].

An element a of a DCPO is called finite (Abramsky and Jung [1] use the term

compact ) if for any directed set A, if a ⊑
⊔
A, then there exists b ∈ A such that a ⊑ b.

Equivalently, a is finite if its up-closure {a}↑ is Scott-open. A DCPO is called algebraic

if for every element b, the finite elements ⊑-below b form a directed set and b is the

supremum of this set. An element a of a DCPO approximates another element b, written

a ≪ b, if for any directed set A, a ⊑ c for some c ∈ A whenever b ⊑
⊔
A. A DCPO is

called continuous if for every element b, the elements≪-below b form a directed set and

b is the supremum of this set. Every algebraic DCPO is continuous. A set in a topological

space is compact-open if it is compact (every open cover has a finite subcover) and open.

Here we recall some basic facts about DCPOs. These are all well-known, but we

state them as a lemma for future reference.

Lemma 3.3.1 (DCPO Basic Facts).

(i) Let E be a DCPO and D1, D2 sets. There is a homeomorphism (bicontinuous bijection)

curry between the DCPOs D1 × D2 → E and D1 → D2 → E, where the function

spaces are ordered pointwise. The inverse of curry is uncurry.

(ii) In an algebraic DCPO, the open sets {a}↑ for finite a form a base for the Scott topology.

(iii) A subset of an algebraic DCPO is compact-open iff it is a finite union of basic open sets

{a}↑.

74



Syntax

Naturals n ::= 0 | 1 | 2 | . . .
Fields f ::= f1 | . . . | fk

Packets Pk ∋ π ::= {f1 = n1, . . . , fk = nk}
Histories H ∋ h ::= π::ℏ

ℏ ::= ⟨⟩ | π::ℏ
Probabilities r ∈ [0, 1]

Predicates t, u ::= drop False/Drop
| skip True/Skip
| f =n Test
| t& u Disjunction
| t · u Conjunction
| ¬t Negation

Programs p, q ::= t Filter
| f �n Modification
| dup Duplication
| p& q Union
| p · q Sequencing
| p ⊕r q Choice
| p∗ Iteration

Semantics JpK ∈ 2H →M(2H)

JdropK(a) := η(∅)

JskipK(a) := η(a)

Jf =nK(a) := η({π::ℏ ∈ a | π.f = n})
J¬tK(a) := JtK(a)≫=λb.η(a− b)

Jf �nK(a) := η({π[f :=n]::ℏ | π::ℏ ∈ a})
JdupK(a) := η({π::π::ℏ | π::ℏ ∈ a})

Jp& qK(a) :=
JpK(a)≫=λb1. JqK(a)≫=λb2. η(b1 ∪ b2)

Jp · qK(a) := JpK(a)≫=JqK
Jp ⊕r qK(a) := r · JpK(a) + (1− r) · JqK(a)

Jp∗K(a) :=
⊔
n∈N

Jp(n)K(a), where

p(0) := skip
p(n+1) := skip& p · p(n) (n ≥ 0)

Probability Monad ⟨D, η,≫=⟩
D(X) := {prob. measures µ : B → [0, 1]}
η(a) := δa

µ≫=P := λA.
∫
a∈X P (a)(A) · µ(da)

Figure 3.2: ProbNetKAT: syntax and semantics, parameterized over monadM(−).

3.4 ProbNetKAT

This section defines the syntax and semantics of ProbNetKAT formally (see Figure 3.2)

and establishes some basic properties. ProbNetKAT is a core calculus designed to capture

the essential forwarding behavior of probabilistic network programs. In particular, the

language includes primitives that model fundamental constructs such as parallel and

sequential composition, iteration, and random choice. It does not model features such

as mutable state, asynchrony, and dynamic updates, although extensions to NetKAT-like

languages with several of these features have been studied in previous work [110, 146].

75



Syntax. A packet π is a record mapping a finite set of fields f1, f2, . . . , fk to bounded

integers n. Fields include standard header fields such as the source (src) and destination

(dst) of the packet, and two logical fields (sw for switch and pt for port) that record

the current location of the packet in the network. The logical fields are not present in a

physical network packet, but it is convenient to model them as proper header fields. We

write π.f to denote the value of field f of π and π[f :=n] for the packet obtained from π

by updating field f to n. We let Pk denote the (finite) set of all packets.

A history h = π::ℏ is a non-empty list of packets with head packet π and (possibly

empty) tail ℏ. The head packet models the packet’s current state and the tail contains

its prior states, which capture the trajectory of the packet through the network. Opera-

tionally, only the head packet exists, but it is useful to discriminate between identical

packets with different histories. We write H to denote the (countable) set of all histories.

We differentiate between predicates (t, u) and programs (p, q). The predicates form

a Boolean algebra and include the primitives false (drop), true (skip), and tests (f =n),

as well as the standard Boolean operators disjunction (t & u), conjunction (t · u), and

negation (¬t). Programs include predicates (t) and modifications (f �n) as primitives,

and the operators parallel composition (p& q), sequential composition (p · q), and iteration

(p∗). The primitive dup records the current state of the packet by extending the tail with

the head packet. Intuitively, we may think of a history as a log of a packet’s activity, and

of dup as the logging command. Finally, choice p ⊕r q executes p with probability r or q

with probability 1− r. We write p⊕ q when r = 0.5.

Predicate conjunction and sequential composition use the same syntax (t · u) as their

semantics coincide (as we will see shortly). The same is true for disjunction of predicates

and parallel composition (t & u). The distinction between predicates and programs is

merely to restrict negation to predicates and rule out programs like ¬(p∗).

76



Syntactic Sugar. The language as presented in Figure 3.2 is reduced to its core primi-

tives. It is worth noting that many useful constructs can be derived from this core. In

particular, it is straightforward to encode conditionals and while loops:

if t then p else q := t · p& ¬t · q

while t do p := (t · p)∗ · ¬t

These encodings are well-known from KAT [90]. While loops are useful for implementing

higher level abstractions such as network virtualization in NetKAT [164].

Example. Consider the programs

p1 := pt=1 · (pt�2 & pt�3)

p2 := (pt=2 & pt=3) · dst�10.0.0.1 · pt�1

The first program forwards packets entering at port 1 out of ports 2 and 3—a simple

form of multicast—and drops all other packets. The second program matches on packets

coming in on ports 2 or 3, modifies their destination to the IP address 10.0.0.1, and sends

them out through port 1. The program p1 & p2 acts like p1 for packets entering at port 1,

and like p2 for packets entering at ports 2 or 3.

Monads. We define the semantics of NetKAT programs parametrically over a monad

M. This allows us to give two concrete semantics at once: the classical deterministic

semantics (using the identity monad), and the new probabilistic semantics (using the

probability monad). For simplicity, we refrain from giving a categorical treatment and

simply model a monad in terms of three components:

• a constructorM that lifts X to a domainM(X);

• an operator η : X →M(X) that lifts objects into the domainM(X); and

77



• an infix operator

≫= :M(X)→ (X →M(X))→M(X)

that lifts a function f : X →M(X) to a function

(−≫= f) :M(X)→M(X)

These components must satisfy three axioms:

η(a)≫= f = f(a) (M1)

m≫= η = m (M2)

(m≫= f)≫= g = m≫=(λx.f(x)≫= g) (M3)

The semantics of deterministic programs (not containing probabilistic choices p ⊕r q)

uses as underlying objects the set of packet histories 2H and the identity monadM(X) =

X: η is the identify function and x≫= f is simply function application f(x). The identity

monad trivially satisfies the three axioms.

The semantics of probabilistic programs uses the probability (or Giry) monad [52,

72, 142] D(−), that maps a measurable space to the domain of probability measures

over that space. The operator η maps a to the point mass (or Dirac measure) δa on

a. Composition µ≫=(λa.νa) can be thought of as a two-stage probabilistic experiment

where the second experiment νa depends on the outcome a of the first experiment µ.

Operationally, we first sample from µ to obtain a random outcome a; then, we sample

from νa to obtain the final outcome b. What is the distribution over final outcomes? It

can be obtained by observing that λa.νa is a Markov kernel (§3.3), and so composition

with µ is given by the familiar integral

µ≫=(λa.νa) = λA.

∫
a∈X

νa(A) · µ(da)

introduced in (3.1). It is well known that these definitions satisfy the monad axioms

[52, 72, 87]. (M1) and (M2) are trivial properties of the Lebesgue Integral. (M3) is

78



essentially Fubini’s theorem, which permits changing the order of integration in a double

integral.

Deterministic Semantics. In deterministic NetKAT (without p ⊕r q), a program p

denotes a function JpK ∈ 2H → 2H mapping a set of input histories a ∈ 2H to a set

of output histories JpK(a). Note that the input and output sets do not encode non-

determinism but represent sets of “in-flight” packets in the network. Histories record the

processing done to each packet as it traverses the network. In particular, histories enable

reasoning about path properties and determining which outputs were generated from

common inputs.

Formally, a predicate t maps the input set a to the subset b ⊆ a of histories satisfying

the predicate. In particular, the false primitive drop denotes the function mapping any

input to the empty set; the true primitive skip is the identity function; the test f =n

retains those histories with field f of the head packet equal to n; and negation ¬t returns

only those histories not satisfying t. Modification f �n sets the f -field of all head-packets

to the value n. Duplication dup extends the tails of all input histories with their head

packets, thus permanently recording the current state of the packets.

Parallel composition p & q feeds the input to both p and q and takes the union of

their outputs. If p and q are predicates, a history is thus in the output iff it satisfies at

least one of p or q, so that union acts like logical disjunction on predicates. Sequential

composition p · q feeds the input to p and then feeds p’s output to q to produce the final

result. If p and q are predicates, a history is thus in the output iff it satisfies both p and q,

acting like logical conjunction. Iteration p∗ behaves like the parallel composition of p

sequentially composed with itself zero or more times (because
⊔

is union in 2H).

Probabilistic Semantics. The semantics of ProbNetKAT is given using the probability

monad D(−) applied to the set of history sets 2H (seen as a measurable space). A

79



program p denotes a function

JpK ∈ 2H → {µ : B → [0, 1] | µ is a probability measure}

mapping a set of input histories a to a distribution over output sets JpK(a). Here, B

denotes the Borel sets of 2H (§3.5). Equivalently, JpK is a Markov kernel with source

and destination (2H,B). The semantics of all primitive programs is identical to the

deterministic case, except that they now return point masses on output sets (rather than

just output sets). In fact, it follows from (M1) that all programs without choices and

iteration are point masses.

Parallel composition p & q feeds the input a to p and q, samples b1 and b2 from

the output distributions JpK(a) and JqK(a), and returns the union of the samples b1 ∪

b2. Probabilistic choice p ⊕r q feeds the input to both p and q and returns a convex

combination of the output distributions according to r. Sequential composition p · q

is just sequential composition of Markov kernels. Operationally, it feeds the input to

p, obtains a sample b from p’s output distribution, and feeds the sample to q to obtain

the final distribution. Iteration p∗ is defined as the least fixpoint of the map on Markov

kernels X 7→ 1 & JpK;X, which is continuous in a DCPO that we will develop in the

following sections. We will show that this definition, which is simple and is based on

standard techniques from domain theory, coincides with the semantics proposed in

previous work [44].

Basic Properties. To clarify the nature of predicates and other primitives, we establish

two intuitive properties:

Lemma 3.4.1. Any predicate t satisfies JtK(a) = η(a∩ bt), where bt := JtK(H) in the identity

monad.

Proof. By induction on t, using (M1) in the induction step.

80



Lemma 3.4.2. All atomic programs p (i.e., predicates, dup, and modifications) satisfy

JpK(a) = η({fp(h) | h ∈ a})

for some partial function fp : H ⇀ H.

Proof. Immediate from Figure 3.2 and Lemma 3.4.1.

Lemma 3.4.1 captures the intuition that predicates act like packet filters. Lemma 3.4.2

establishes that the behavior of atomic programs is captured by their behavior on indi-

vidual histories.

Note however that ProbNetKAT’s semantic domain is rich enough to model interac-

tions between packets. For example, it would be straightforward to extend the language

with new primitives whose behavior depends on properties of the input set of packet

histories—e.g., a rate-limiting construct @n that selects at most n packets uniformly at

random from the input and drops all other packets. Our results continue to hold when

the language is extended with arbitrary continuous Markov kernels of appropriate type,

or continuous operations on such kernels.

Another important observation is that although ProbNetKAT does not include con-

tinuous distributions as primitives, there are programs that generate continuous distribu-

tions by combining choice and iteration:

Lemma 3.4.3 (Theorem 3 in Foster et al. [44]). Let π0, π1 denote distinct packets. Let p

denote the program that changes the head packet of all inputs to either π0 or π1 with equal

probability. Then

Jp · (dup · p)∗K({π},−)

is a continuous distribution.

Hence, ProbNetKAT programs cannot be modeled by functions of type 2H → (2H →

[0, 1]) in general. We need to define a measure space over 2H and consider general

probability measures.

81



3.5 Cantor Meets Scott

To define continuous probability measures on an infinite set X, one first needs to endow

X with a topology—some additional structure that, intuitively, captures which elements

of X are close to each other or approximate each other. Although the choice of topology

is arbitrary in principle, different topologies induce different notions of continuity and

limits, thus profoundly impacting the concepts derived from these primitives. Which

topology is the “right” one for 2H? A fundamental contribution of this chapter is to show

that there are (at least) two answers to this question:

• The initial work on ProbNetKAT [44] uses the Cantor topology. This makes 2H a

standard Borel space, which is well-studied and known to enjoy many desirable

properties.

• This chapter is based on the Scott topology, the standard choice of domain theorists.

Although this topology is weaker in the sense that it lacks much of the useful

structure and properties of a standard Borel space, it leads to a simpler and more

computational account of ProbNetKAT’s semantics.

Despite this, one view is not better than the other. The main advantage of the Cantor

topology is that it allows us to reason in terms of a metric. With the Scott topology, we

sacrifice this metric, but in return we are able to interpret all program operators and

programs as continuous functions. The two views yield different convergence theorem,

both of which are useful. Remarkably, we can have the best of both worlds: it turns out

that the two topologies generate the same Borel sets, so the probability measures are

the same regardless. We will prove (Theorem 3.7.7) that the semantics in Figure 3.2

coincides with the original semantics [44], recovering all the results from previous

work. This allows us to freely switch between the two views as convenient. The rest

of this section illustrates the difference between the two topologies intuitively, defines

82



the topologies formally and endows 2H with Borel sets, and proves a general theorem

relating the two.

Cantor and Scott, intuitively. The Cantor topology is best understood in terms of a

distance d(a, b) of history sets a, b, formally known as a metric. Define this metric as

d(a, b) = 2−n, where n is the length of the shortest packet history in the symmetric

difference of a and b if a ̸= b, or d(a, b) = 0 if a = b. Intuitively, history sets are close

if they differ only in very long histories. This gives the following notions of limit and

continuity:

• a is the limit of a sequence a1, a2, . . . iff the distance d(a, an) approaches 0 as

n→∞.

• a function f : 2H → [0,∞] is continuous at point a iff f(an) approaches f(a)

whenever an approaches a.

The Scott topology cannot be described in terms of a metric. It is captured by

a complete partial order (2H,⊑) on history sets. If we choose the subset order (with

suprema given by union) we obtain the following notions:

• a is the limit of a sequence a1 ⊆ a2 ⊆ . . . iff a =
⋃

n∈N an.

• a function f : 2H → [0,∞] is continuous at point a iff f(a) = supn∈N f(an) whenever

a is the limit of a1 ⊆ a2 ⊆ . . . .

Example. To illustrate the difference between Cantor-continuity and Scott-continuity,

consider the function f(a) := |a| that maps a history set to its (possibly infinite) cardinal-

ity. The function is not Cantor-continuous. To see this, let hn denote a history of length

n and consider the sequence of singleton sets an := {hn}. Then d(an,∅) = 2−n, i.e. the

sequence approaches the empty set as n approaches infinity. But the cardinality |an| = 1

does not approach |∅| = 0. In contrast, the function is easily seen to be Scott-continuous.

83



As a second example, consider the function f(a) := 2−k, where k is the length of the

smallest history not in a. This function is Cantor-continuous: if d(an, a) = 2−n, then

|f(an)− f(a)| ≤ 2−(n−1) − 2−n ≤ 2−n

Therefore f(an) approaches f(a) as the distance d(an, a) approaches 0. However, the

function is not Scott-continuous1, as all Scott-continuous functions are monotone.

Approximation. The computational importance of limits and continuity comes from

the following idea. Assume a is some complicated (say infinite) mathematical object. If

a1, a2, . . . is a sequence of simple (say finite) objects with limit a, then it may be possible

to approximate a using the sequence (an). This gives us a computational way of working

with infinite objects, even though the available resources may be fundamentally finite.

Continuity captures precisely when this is possible: we can perform a computation f on

a if f is continuous in a, for then we can compute the sequence f(a1), f(a2), . . . which

(by continuity) converges to f(a).

We will show later that any measure µ can be approximated by a sequence of finite

measures µ1, µ2, . . . , and that the expected value Eµ[f ] of a Scott-continuous random

variable f is continuous with respect to the measure. Our implementation exploits this

to compute a monotonically improving sequence of approximations for performance

metrics such as latency and congestion (§3.9).

Notation. We use lower case letters a, b, c ⊆ H to denote history sets, uppercase letters

A,B,C ⊆ 2H to denote measurable sets (i.e., sets of history sets), and calligraphic letters

B,O, · · · ⊆ 22
H to denote sets of measurable sets. For a set X, we let ℘ω(X) := {Y ⊆ X |

|Y | <∞} denote the finite subsets of X and 1X the characteristic function of X. For a

statement φ, such as a ⊆ b, we let [φ] denote 1 if φ is true and 0 otherwise.

1with respect to the orders ⊆ on 2H and ≤ on R

84



Cantor and Scott, formally. For h ∈ H and b ∈ 2H, define

Bh := {c | h ∈ c} Bb :=
⋂
h∈b

Bh = {c | b ⊆ c}. (3.3)

The Cantor space topology, denoted C, can be generated by closing {Bh ,∼Bh | h ∈ H}

under finite intersection and arbitrary union. The Scott topology of the DCPO (2H,⊆),

denoted O, can be generated by closing {Bh | h ∈ H} under the same operations and

adding the empty set. The Borel algebra B is the smallest σ-algebra containing the

Cantor-open sets, i.e. B := σ(C). We write Bb for the Boolean subalgebra of B generated

by {Bh | h ∈ b}.

Lemma 3.5.1.

(i) b ⊆ c⇔ Bc ⊆ Bb

(ii) Bb ∩Bc = Bb∪c

(iii) B∅ = 2H

(iv) BH =
⋃

b∈℘ω(H) Bb.

Note that if b is finite, then so is Bb. Moreover, the atoms of Bb are in one-to-one

correspondence with the subsets a ⊆ b. The subsets a determine which of the Bh occur

positively in the construction of the atom,

Aab :=
⋂
h∈a

Bh ∩
⋂

h∈b−a

∼Bh

= Ba −
⋃

a⊂c⊆b

Bc = {c ∈ 2H | c ∩ b = a},
(3.4)

where ⊂ denotes proper subset. The atoms Aab are the basic open sets of the Cantor

space. The notation Aab is reserved for such sets.

Lemma 3.5.2 (Figure 3.3). For b finite and a ⊆ b, Ba =
⋃

a⊆c⊆b Acb.

85



Proof. By (3.4),

⋃
a⊆c⊆b

Acb =
⋃

a⊆c⊆b

{d ∈ 2H | d ∩ b = c}

= {d ∈ 2H | a ⊆ d} = Ba.

Scott Topology Properties. Let O denote the family of Scott-open sets of (2H,⊆).

Following are some facts about this topology.

• The DCPO (2H,⊆) is algebraic. The finite elements of 2H are the finite subsets

a ∈ ℘ω(H), and their up-closures are {a}↑ = Ba.

• By Lemma 3.3.1((ii)), the up-closures {a}↑ = Ba form a base for the Scott topology.

The sets Bh for h ∈ H are therefore a subbase.

• Thus, a subset B ⊆ 2H is Scott-open iff there exists F ⊆ ℘ω(H) such that B =⋃
a∈F Ba.

• The Scott topology is weaker than the Cantor space topology, e.g., ∼Bh is Cantor-

open but not Scott-open. However, the Borel sets of the topologies are the same, as

∼Bh is a Π0
1 Borel set.2

• Although any Scott-open set in 2H is also Cantor-open, a Scott-continuous function

f : 2H → R+ is not necessarily Cantor-continuous. This is because for Scott-

continuity we consider R+ (ordered by ≤) with the Scott topology, but for Cantor-

continuity we consider R+ with the standard Euclidean topology.

• Any Scott-continuous function f : 2H → R+ is measurable, because the Scott-open

sets of (R+,≤) (i.e., the upper semi-infinite intervals (r,∞] = {r}↑ for r ≥ 0)

generate the Borell sets on R+.

2References to the Borel hierarchy Σ0
n and Π0

n refer to the Scott topology. The Cantor and Scott
topologies have different Borel hierarchies.

86



• The open sets O ordered by the subset relation forms an ω-complete lattice with

bottom ∅ and top B∅ = 2H.

• The finite sets a ∈ ℘ω(H) are dense and countable, thus the space is separable.

• The Scott topology is not Hausdorff, metrizable, or compact. It is not Hausdorff,

as any nonempty open set contains H, but it satisfies the weaker T0 separation

property: for any pair of points a, b with a ̸⊆ b, a ∈ Ba but b ̸∈ Ba.

• There is an up-closed Π0
2 Borel set with an uncountable set of minimal elements.

• There are up-closed Borel sets with no minimal elements; for example, the family

of cofinite subsets of H, a Σ0
3 Borel set.

• The compact-open sets are those of the form F↑, where F is a finite set of finite sets.

There are plenty of open sets that are not compact-open, e.g. B∅−{∅} =
⋃

h∈H Bh .

Lemma 3.5.3 (see Halmos [60, Theorem III.13.A]). Any probability measure is uniquely

determined by its values on Bb for b finite.

Proof. For b finite, the atoms of Bb are of the form (3.4). By the inclusion-exclusion

principle (see Figure 3.3),

µ(Aab) = µ(Ba −
⋃

a⊂c⊆b

Bc) =
∑
a⊆c⊆b

(−1)|c−a|µ(Bc). (3.5)

Thus µ is uniquely determined on the atoms of Bb and therefore on Bb. As BH is the

union of the Bb for finite b, µ is uniquely determined on BH. By the monotone class

theorem, the Borel sets B are the smallest monotone class containing BH, and since

µ(
⋃

n An) = supn µ(An) and µ(
⋂

n An) = infn µ(An), we have that µ is determined on all

Borel sets.

87



Aπστ

Aπ

Aσ AτAστ

AτπAπσ

A∅

Bπ

Bσ Bτ

Figure 3.3: Relationship of the basic Scott-open sets Ba to the basic Cantor-open sets
Aab for b = {π, σ, τ} and a ⊆ b. The regions labeled A∅, Aπ, Aπσ, etc. represent the basic
Cantor-open sets A∅,b, A{π},b, A{π,σ},b, etc. These are the atoms of the Boolean algebra Bb.
Several basic Scott-open sets are not shown, e.g. B{π,σ} = Bπ ∩Bσ = A{π,σ},b ∪ A{π,σ,τ},b.

Extension Theorem. We now prove a useful extension theorem (Theorem 3.5.4) that

identifies necessary and sufficient conditions for extending a function O → [0, 1] defined

on the Scott-open sets of 2H to a measure B → [0, 1]. The theorem yields a remarkable

linear correspondence between the Cantor and Scott topologies (Theorem 3.5.6). We

prove it for 2H only, but generalizations may be possible.

Theorem 3.5.4. A function µ : {Bb | b finite} → [0, 1] extends to a measure µ : B → [0, 1]

if and only if for all finite b and all a ⊆ b,

∑
a⊆c⊆b

(−1)|c−a|µ(Bc) ≥ 0.

Moreover, the extension to B is unique.

Proof. The condition is clearly necessary by (3.5). For sufficiency and uniqueness, we

use the Carathéodory extension theorem. For each atom Aab of Bb, µ(Aab) is already

determined uniquely by (3.5) and nonnegative by assumption. For each B ∈ Bb, write

B uniquely as a union of atoms and define µ(B) to be the sum of the µ(Aab) for all

atoms Aab of Bb contained in B. We must show that µ(B) is well-defined. Note that the

definition is given in terms of b, and we must show that the definition is independent of

88



the choice of b. It suffices to show that the calculation using atoms of b′ = b ∪ {h}, h ̸∈ b,

gives the same result. Each atom of Bb is the disjoint union of two atoms of Bb′:

Aab = Aa∪{h},b∪{h} ∪ Aa,b∪{h}

It suffices to show the sum of their measures is the measure of Aab:

µ(Aa,b∪{h}) =
∑

a⊆c⊆b∪{h}

(−1)|c−a|µ(Bc)

=
∑
a⊆c⊆b

(−1)|c−a|µ(Bc) +
∑

a∪{h}⊆c⊆b∪{h}

(−1)|c−a|µ(Bc)

= µ(Aab)− µ(Aa∪{h},b∪{h}).

To apply the Carathéodory extension theorem, we must show that µ is countably additive,

i.e. that µ(
⋃

n An) =
∑

n µ(An) for any countable sequence An ∈ BH of pairwise disjoint

sets whose union is in BH. For finite sequences An ∈ BH, write each An uniquely as a

disjoint union of atoms of Bb for some sufficiently large b such that all An ∈ Bb. Then⋃
n An ∈ Bb, the values of the atoms are given by (3.5), and the value of µ(

⋃
nAn) is

well-defined and equal to
∑

n µ(An). We cannot have an infinite set of pairwise disjoint

nonempty An ∈ BH whose union is in BH by compactness. All elements of BH are clopen

in the Cantor topology. If
⋃

n An = A ∈ BH, then {An | n ≥ 0} would be an open cover of

A with no finite subcover.

Cantor Meets Scott. We now establish a correspondence between the Cantor and Scott

topologies on 2H. Consider the infinite triangular matrix E and its inverse E−1 with rows

and columns indexed by the finite subsets of H, where

Eac = [a ⊆ c] E−1
ac = (−1)|c−a|[a ⊆ c].

89



These matrices are indeed inverses: For a, d ∈ ℘ω(H),

(E · E−1)ad =
∑
c

Eac · E−1
cd

=
∑
c

[a ⊆ c] · [c ⊆ d] · (−1)|d−c|

=
∑

a⊆c⊆d

(−1)|d−c| = [a = d],

thus E · E−1 = I, and similarly E−1 · E = I.

Recall that the Cantor basic open sets are the elements Aab for b finite and a ⊆ b.

Those for fixed finite b are the atoms of the Boolean algebra Bb. They form the basis of a

2|b|-dimensional linear space. The Scott basic open sets Ba for a ⊆ b are another basis for

the same space. The two bases are related by the matrix E[b], the 2b × 2b submatrix of E

with rows and columns indexed by subsets of b. One can show that the finite matrix E[b]

is invertible with inverse E[b]−1 = (E−1)[b].

Lemma 3.5.5. Let µ be a measure on 2H and b ∈ ℘ω(H). Let X, Y be vectors indexed by

subsets of b such that Xa = µ(Ba) and Ya = µ(Aab) for a ⊆ b. Let E[b] be the 2b × 2b

submatrix of E. Then X = E[b] · Y .

The matrix-vector equation X = E[b] · Y captures the fact that for a ⊆ b, Ba is the

disjoint union of the atoms Acb of Bb for a ⊆ c ⊆ b (see Figure 3.3), and consequently

µ(Ba) is the sum of µ(Acb) for these atoms. The inverse equation X = E[b]−1 ·Y captures

the inclusion-exclusion principle for Bb.

In fact, more can be said about the structure of E. For any b ∈ 2H, finite or infinite,

let E[b] be the submatrix of E with rows and columns indexed by the subsets of b. If

a∩b = ∅, then E[a∪b] = E[a]⊗E[b], where ⊗ denotes Kronecker product. The formation

of the Kronecker product requires a notion of pairing on indices, which in our case is

90



given by disjoint set union. For example,

E[{h1}] =


∅ {h1}

∅ 1 1

{h1} 0 1

 E[{h2}] =


∅ {h2}

∅ 1 1

{h2} 0 1



E[{h1, h2}] = E[{h1}]⊗ E[{h2}] =



∅ {h1} {h2} {h1,h2}

∅ 1 1 1 1

{h1} 0 1 0 1

{h2} 0 0 1 1

{h1,h2} 0 0 0 1


As (E ⊗ F )−1 = E−1 ⊗ F−1 for Kronecker products of invertible matrices, we also have

E[{h1}]−1 =

 1 −1

0 1

 E[{h2}]−1 =

 1 −1

0 1



E[{h1, h2}]−1 = E[{h1}]−1 ⊗ E[{h2}]−1 =



1 −1 −1 1

0 1 0 −1

0 0 1 −1

0 0 0 1


E can be viewed as the infinite Kronecker product

⊗
h∈HE[{h}].

Theorem 3.5.6. The probability measures on (2H,B) are in one-to-one correspondence with

pairs of matrices M,N ∈ R℘ω(H)×℘ω(H) such that

(i) M is diagonal with entries in [0, 1],

(ii) N is nonnegative, and

(iii) N = E−1ME.

The correspondence associates the measure µ with the matrices

Nab = µ(Aab) Mab = [a = b] · µ(Ba). (3.6)

91



3.6 A DCPO on Markov Kernels

In this section we define a continuous DCPO on Markov kernels. Proofs omitted from

this section can be found in the appendix.

We will interpret all program operators defined in Figure 3.2 also as operators on

Markov kernels: for an operator Jp ⊗ qK defined on programs p and q, we obtain a

definition of P ⊗Q on Markov kernels P and Q by replacing JpK with P and JqK with Q

in the original definition. Additionally we define & on probability measures as follows:

(µ& ν)(A) := (µ× ν)({(a, b) | a ∪ b ∈ A})

The corresponding operation on programs and kernels as defined in Figure 3.2 can easily

be shown to be equivalent to a pointwise lifting of the definition here.

For measures µ, ν on 2H, define µ ⊑ ν if µ(B) ≤ ν(B) for all B ∈ O. This order was

first defined by Saheb-Djahromi [151].

Theorem 3.6.1 ([151]). The probability measures on the Borel sets generated by the Scott

topology of an algebraic DCPO ordered by ⊑ form a DCPO.

Because (2H,⊆) is an algebraic DCPO, Theorem 3.6.1 applies.3 In this case, the

bottom and top elements are δ∅ and δH respectively.

Lemma 3.6.2. µ ⊑ µ& ν and ν ⊑ µ& ν.

Surprisingly, despite Lemma 3.6.2, the probability measures do not form an upper

semilattice under ⊑, although counterexamples are somewhat difficult to construct. See

the appendix for an example.

Next we lift the order ⊑ to Markov kernels P : 2H × B → [0, 1]. The order is defined

pointwise on kernels regarded as functions 2H ×O → [0, 1]; that is,

P ⊑ Q :⇐⇒ ∀a ∈ 2H. ∀B ∈ O. P (a,B) ≤ Q(a,B).

3A beautiful proof based on Theorem 3.5.4 can be found in the appendix.

92



There are several ways of viewing the lifted order ⊑, as shown in the next lemma.

Lemma 3.6.3. The following are equivalent:

(i) P ⊑ Q, i.e., ∀a ∈ 2H and B ∈ O, P (a,B) ≤ Q(a,B);

(ii) ∀a ∈ 2H, P (a,−) ⊑ Q(a,−) in the DCPO D(2H);

(iii) ∀B ∈ O, P (−, B) ⊑ Q(−, B) in the DCPO 2H → [0, 1];

(iv) curryP ⊑ curryQ in the DCPO 2H → D(2H).

A Markov kernel P : 2H × B → [0, 1] is continuous if it is Scott-continuous in its first

argument; i.e., for any fixed A ∈ O, P (a,A) ≤ P (b, A) whenever a ⊆ b, and for any

directed set D ⊆ 2H we have P (
⋃

D,A) = supa∈D P (a,A). This is equivalent to saying

that curryP : 2H → D(2H) is Scott-continuous as a function from the DCPO 2H ordered

by ⊆ to the DCPO of probability measures ordered by ⊑. We will show later that all

ProbNetKAT programs give rise to continuous kernels.

Theorem 3.6.4. The continuous kernels P : 2H×B → [0, 1] ordered by⊑ form a continuous

DCPO with basis consisting of kernels of the form b · P · d for P an arbitrary continuous

kernel and b, d filters on finite sets b and d; that is, kernels that drop all input packets except

for those in b and all output packets except those in d.

It is not true that the space of continuous kernels is algebraic with finite elements

b · P · d. See the appendix for a counterexample.

3.7 Continuity and Semantics of Iteration

This section develops the technology needed to establish that all ProbNetKAT programs

give continuous Markov kernels and that all program operators are themselves continu-

ous. These results are needed for the least fixpoint characterization of iteration and also

pave the way for our approximation results (§3.8).

93



The key fact that underpins these results is that Lebesgue integration respects the

orders on measures and on functions:

Theorem 3.7.1. Integration is Scott-continuous in both arguments:

(i) For any Scott-continuous function f : 2H → [0,∞], the map

µ 7→
∫

f dµ (3.7)

is Scott-continuous with respect to the order ⊑ onM(2H).

(ii) For any probability measure µ, the map

f 7→
∫

f dµ (3.8)

is Scott-continuous with respect to the order on [2H → [0,∞]].

The proofs of the remaining results in this section are somewhat long and mostly

routine, but can be found in the appendix.

Theorem 3.7.2. The deterministic kernels associated with any Scott-continuous function

f : D → E are continuous, and the following operations on kernels preserve continuity:

product, integration, sequential composition, parallel composition, choice, iteration.

The above theorem implies that Q 7→ skip& P ·Q is a continuous map on the DCPO

of continuous Markov kernels. Hence P ∗ =
⊔

n P
(n) is well-defined as the least fixed

point of that map.

Corollary 3.7.3. Every ProbNetKAT program denotes a continuous Markov kernel.

The next theorem is the key result that enables a practical implementation:

Theorem 3.7.4. The following semantic operations are continuous functions of the DCPO

of continuous kernels: product, parallel composition, curry, sequential composition, choice,

iteration. (Figure 3.4.)

94



( ⊔
n≥0

Pn

)
&Q =

⊔
n≥0

(
Pn &Q

)
( ⊔

n≥0

Pn

)
⊕r Q =

⊔
n≥0

(
Pn ⊕r Q

)
( ⊔

n≥0

Pn

)
·Q =

⊔
n≥0

(
Pn ·Q

)
Q ·
( ⊔

n≥0

Pn

)
=

⊔
n≥0

(
Q · Pn

)
( ⊔

n≥0

Pn

)∗
=

⊔
n≥0

(
P ∗
n

)

Figure 3.4: Scott-Continuity of program operators (Theorem 3.7.4).

The semantics of iteration presented in [44], defined in terms of an infinite process,

coincides with the least fixpoint semantics presented here. The key observation is the

relationship between weak convergence in the Cantor topology and fixpoint convergence

in the Scott topology:

Theorem 3.7.5. Let A be a directed set of probability measures with respect to ⊑ and let

f : 2H → [0, 1] be a Cantor-continuous function. Then

lim
µ∈A

∫
c∈2H

f(c) · dµ =

∫
c∈2H

f(c) · d(
⊔
A).

This theorem implies that P (n) weakly converges to P ∗ in the Cantor topology. [44]

showed that P (n) also weakly converges to P⊛ in the Cantor topology, where we let P⊛

denote the iterate of P as defined in [44]. But since (2H, C) is a Polish space, this implies

that P ∗ = P⊛.

Lemma 3.7.6. In a Polish space D, the values of∫
a∈D

f(a) · µ(da)

for continuous f : D → [0, 1] determine µ uniquely.

Corollary 3.7.7. P⊛ =
⊔

n P
(n) = P ∗.

95



3.8 Approximation

We now formalize a notion of approximation for ProbNetKAT programs. Given a program

p, we define the n-th approximant [p]n inductively as

[p]n := p (for p primitive)

[q ⊕r r]n := [q]n ⊕r [r]n

[q & r]n := [q]n & [r]n

[q · r]n := [q]n · [r]n

[q∗]n := ([q]n)
(n)

Intuitively, [p]n is just p where iteration −∗ is replaced by bounded iteration −(n). Let

JpKn denote the Markov kernel obtained from the n-th approximant: J[p]nK.

Theorem 3.8.1. The approximants of a program p form a ⊑-increasing chain with supre-

mum p, that is

JpK1 ⊑ JpK2 ⊑ . . . and
⊔
n≥0

JpKn = JpK

Proof. By induction on p and continuity of the operators.

This means that any program can be approximated by a sequence of star-free

programs, which—in contrast to general programs (Lemma 3.4.3)—can only produce

finite distributions. These finite distributions are sufficient to compute the expected

values of Scott-continuous random variables:

Corollary 3.8.2. Let µ ∈ M(2H) be an input distribution, p be a program, and Q : 2H →

[0,∞] be a Scott-continuous random variable. Let

ν := µ≫=JpK and νn := µ≫=JpKn

denote the output distribution and its approximations. Then

E
ν0
[Q] ≤ E

ν1
[Q] ≤ . . . and sup

n∈N
E
νn
[Q] = E

ν
[Q]

96



Proof. Follows directly from Theorems 3.8.1 and 3.7.1.

Note that the approximations νn of the output distribution ν are always finite,

provided the input distribution µ is finite. Computing an expected value with respect to ν

thus simply amounts to computing a sequence of finite sums Eν0 [Q],Eν1 [Q], . . . , which is

guranteed to converge monotonically to the analytical solution Eν [Q]. The approximate

semantics J−Kn can be thought of as an executable version of the denotational semantics

J−K. We implement it in the next section and use it to approximate network metrics

based on the above result. The rest of this section gives more general approximation

results for measures and kernels on 2H, and shows that we can in fact handle continuous

input distributions as well.

A measure is a finite discrete measure if it is of the form
∑

a∈F raδa, where F ∈

℘ω(℘ω(H)) is a finite set of finite subsets of packet histories H, ra ≥ 0 for all a ∈ F ,∑
a∈F ra = 1. Without loss of generality, we can write any such measure in the form∑
a⊆b raδa for any b ∈ ℘ω(H) such that

⋃
F ⊆ b by taking ra = 0 for a ∈ 2b − F .

Saheb-Djahromi [151, Theorem 3] shows that every measure is a supremum of a

directed set of finite discrete measures. This implies that the measures form a continuous

DCPO with basis consisting of the finite discrete measures. In our model, the finite

discrete measures have a particularly nice characterization:

For µ a measure and b ∈ ℘ω(H), define the restriction of µ to b to be the finite discrete

measure

µ↾b :=
∑
a⊆b

µ(Aab)δa.

Theorem 3.8.3. The set {µ↾b | b ∈ ℘ω(H)} is a directed set with supremum µ. Moreover,

the DCPO of measures is continuous with basis consisting of the finite discrete measures.

We can lift the result to continuous kernels, which implies that every program is

approximated arbitrarily closely by programs whose outputs are finite discrete measures.

97



Lemma 3.8.4. Let b ∈ ℘ω(H). Then (P · b)(a,−) = P (a,−)↾b.

Now suppose the input distribution µ in Corollary 3.8.2 is continuous. By The-

orem 3.8.3, µ is the supremum of an increasing chain of finite discrete measures

µ1 ⊑ µ2 ⊑ . . . . If we redefine νn := µn≫=JpKn then by Theorem 3.7.1 the νn still

approximate the output distribution ν and Corollary 3.8.2 continues to hold. Even

though the input distribution is now continuous, the output distribution can still be

approximated by a chain of finite distributions and hence the expected value can still be

approximated by a chain of finite sums.

3.9 Implementation and Case Studies

We built a simple interpreter for ProbNetKAT in OCaml that implements the denotational

semantics as presented in Figure 3.2. Given a query, the interpreter approximates the

answer through a monotonically increasing sequence of values (Theorems 3.8.1 and

3.8.2). Although preliminary in nature—more work on data structures and algroithms

for manipulating distributions would be needed to obtain an efficient implementation—

we were able to use our implementation to conduct several case studies involving

probabilistic reasoning about properties of a real-world network: Internet2’s Abilene

backbone.

Routing. In the networking literature, a large number of traffic engineering (TE)

approaches have been explored. We built ProbNetKAT implementations of each of the

following routing schemes:

• Equal Cost Multipath Routing (ECMP): The network uses all least-cost paths

between each source-destination pair, and maps incoming traffic flows onto those

paths randomly. ECMP can reduce congestion and increase throughput, but can

also perform poorly when multiple paths traverse the same bottleneck link.

98



• k-Shortest Paths (KSP): The network uses the top k-shortest paths between each

pair of hosts, and again maps incoming traffic flows onto those paths randomly.

This approach inherits the benefits of ECMP and provides improved fault-tolerance

properties since it always spreads traffic across k distinct paths.

• Multipath Routing (Multi): This is similar to KSP, except that it makes an inde-

pendent choice from among the k-shortest paths at each hop rather than just once

at ingress. This approach dynamically routes around bottlenecks and failures but

can use extremely long paths—even ones containing loops.

• Oblivious Routing (Räcke): The network forwards traffic using a pre-computed

probability distribution on carefully constructed overlays. The distribution is

constructed in such a way that guarantees worst-case congestion within a polyloga-

rithmic factor of the optimal scheme, regardless of the demands for traffic.

Note that all of these schemes rely on some form of randomization and hence are

probabilistic in nature.

Traffic Model. Network operators often use traffic models constructed from historical

data to predict future performance. We built a small OCaml tool that translates traffic

models into ProbNetKAT programs using a simple encoding. Assume that we are given

a traffic matrix (TM) that relates pairs of hosts (u, v) to the amount of traffic that

will be sent from u to v. By normalizing each TM entry using the aggregate demand∑
(u,v) TM(u, v), we get a probability distribution d over pairs of hosts. For a pair of

source and destination (u, v), the associated probability d(u, v) denotes the amount of

traffic from u to v relative to the total traffic. Assuming uniform packet sizes, this is

also the probability that a random packet generated in the network has source u and

destination v. So, we can encode a TM as a program that generates packets according to

99



d:
inp := ⊕d(u,v)π(u,v)!

where, π(u,v)! := src�u · dst�v · sw�u

π(u,v)! generates a packet at u with source u and destination v. For any (non-empty)

input, inp generates a distribution µ on packet histories which can be fed to the network

program. For instance, consider a uniform traffic distribution for our 4-switch example

(see Figure 3.1) where each node sends equal traffic to every other node. There are

twelve (u, v) pairs with u ̸= v. So, d(u, v)u̸=v = 1
12

and d(u, u) = 0. We also store the

aggregate demand as it is needed to model queries such as expected link congestion,

throughput etc.

Queries. Our implementation can be used to answer probabilistic queries about a

variety of network performance properties. §3.2 showed an example of using a query to

compute expected congestion. We can also measure expected mean latency in terms of

path length:

let path_length (h: Hist.t) : Real.t =

Real.of_int ((Hist.length h)/2 + 1)

let lift_query_avg (q: Hist.t -> Real.t) : (HSet.t -> Real.t) =

fun hset ->

let n = HSet.length hset in

if n = 0 then Real.zero else

let sum = HSet.fold hset ∼init:Real.zero

∼f:(fun acc h -> Real.(acc + q h)) in

Real.(sum / of_int n)

The latency function (path_length) counts the number of switches in a history. We lift

this function to sets and compute the expectation (lift_query_avg) by computing the

average over all histories in the set (after discarding empty sets).

100



S11

S10 S4

S8

S5
S1

S7
S3

S6
S9

S12S2

(a) Topology

1 2 3 4 5 6 7 8 9 101112
source

1
2
3
4
5
6
7
8
9

10
11
12

d
e
st
in
a
ti
o
n

0

15

30

45

60

75

90

105

M
b
p
s

(b) Traffic matrix

2 4 6 8 10 12
Iterations

0.0

0.1

0.2

0.3

0.4

0.5

M
a
x
 C

o
n
g
e
st

io
n

ECMP

KSP

Multi
Räcke

(c) Max congestion

2 4 6 8 10 12
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

T
h
ro
u
g
h
p
u
t

ECMP

KSP

Multi
Räcke

(d) Throughput

2 4 6 8 10 12
Iterations

0.0

0.1

0.2

0.3

0.4

0.5

M
a
x
 C

o
n
g
e
st

io
n

ECMP

KSP

Multi
Räcke

(e) Max congestion

2 4 6 8 10 12
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

T
h
ro
u
g
h
p
u
t

ECMP

KSP

Multi
Räcke

(f) Throughput

2 4 6 8 10 12
Iterations

0

1

2

3

4

5

6

M
e
a
n
 L

a
te

n
cy

ECMP

KSP

Multi
Räcke

(g) Path length

2 4 6 8 10 12 14
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

T
h
ro
u
g
h
p
u
t

ECMP

RW

(h) Random walk

Figure 3.5: Case study with Abilene: (c, d) without loss; (e, f) with faulty links; (h)
random walk in 4-cycle (all packets are eventually delivered).

101



Case Study: Abilene. To demonstrate the applicability of ProbNetKAT for reasoning

about a real network, we performed a case study based on the topology and traffic

demands from Internet2’s Abilene backbone network as shown in Figure 3.5 (a). We

evaluate the traffic engineering approaches discussed above by modeling traffic matrices

based on NetFlow traces gathered from the production network. A sample TM is depicted

in Figure 3.5 (b).

Figures 3.5 (c,d,g) show the expected maximum congestion, throughput and mean

latency. Because we model a network using the Kleene star operator, we see that the

values converge monotonically as the number of iterations used to approximate Kleene

star increases, as guaranteed by Corollary 3.8.2.

Failures. Network failures such as a faulty router or a link going down are common in

large networks [51]. Hence, it is important to be able to understand the behavior and

performance of a network in the presence of failures. We can model failures by assigning

empirically measured probabilities to various components—e.g., we can modify our

encoding of the topology so that every link in the network drops packets with probability

1
10

:

ℓ1,2 := sw=S1 · pt=2 · dup · ((sw�S2 · pt�1 · dup)⊕0.9 drop)

& sw=S2 · pt=1 · dup · ((sw�S1 · pt�2 · dup)⊕0.9 drop)

Figures 3.5 (e-f) show the network performance for Abilene under this failure model. As

expected, congestion and throughput decrease as more packets are dropped. As every

link drops packets probabilistically, the relative fraction of packets delivered using longer

links decreases—hence, there is a decrease in mean latency.

Loop detection. Forwarding loops in a network are extremely undesirable as they

increase congestion and can even lead to black holes. With probabilistic routing, not all

loops will necessarily result in a black hole—if there is a non-zero probability of exiting

102



a loop, every packet entering it will eventually exit. Consider the example of random

walk routing in the four-node topology from Figure 3.1. In a random walk, a switch

either forwards traffic directly to its destination or to a random neighbor. As packets are

never duplicated and only exit the network when they reach their destination, the total

throughput is equivalent to the fraction of packets that exit the network. Figure 3.5 (h)

shows that the fraction of packets exiting increases monotonically with number of

iterations and converges to 1. Moreover, histories can be queried to test if it encountered

a topological loop by checking for duplicate locations. Hence, given a model that

computes all possible history prefixes that appear in the network, we can query it for

presence of loops. We do this by removing out from our standard network model and

using in · (p · t)∗ · p instead. This program generates the required distribution on history

prefixes. Moreover, if we generalize packets with wildcard fields, similar to HSA [77],

we can check for loops symbolically. We have extended our implementation in this way,

and used it to check whether the network exhibits loops on a number of routing schemes

based on probabilistic forwarding.

3.10 Related Work

This chapter builds on previous work on NetKAT [6, 45] and ProbNetKAT [44], but

develops a semantics based on ordered domains as well as new applications to traffic

engineering.

Domain Theory. The domain-theoretic treatment of probability measures goes back

to the seminal work of Saheb-Djahromi [151], who was the first to identify and study

the CPO of probability measures. Jones and Plotkin [71, 72] generalized and extended

this work by giving a category-theoretical treatment and proving that the probabilistic

powerdomain is a monad. It is an open problem if there exists a cartesian-closed

103



category of continuous DCPOs that is closed under the probabilistic powerdomain; see

[74] for a discussion. This is an issue for higher-order probabilistic languages, but not for

ProbNetKAT, which is strictly first-order. Edalat [36–38] gives a computational account

of measure theory and integration for general metric spaces based on domain theory.

More recent papers on probabilistic powerdomains are [55, 62, 74]. All this work is

ultimately based on Scott’s pioneering work [155].

Probabilistic Logic and Semantics. Computational models and logics for probabilistic

programming have been extensively studied. Denotational and operational semantics for

probabilistic while programs were first studied by Kozen [87]. Early logical systems for

reasoning about probabilistic programs were proposed in [88, 144, 150]. There are also

numerous recent efforts [53, 56, 94, 102, 117]. Sankaranarayanan et al. [153] propose

static analysis to bound the the value of probability queries. Probabilistic programming

in the context of artificial intelligence has also been extensively studied in recent years

[19, 148]. Probabilistic automata in several forms have been a popular model going

back to the early work of Paz [132], as well as more recent efforts [112, 156, 157].

Denotational models combining probability and nondeterminism have been proposed

by several authors [111, 170, 173], and general models for labeled Markov processes,

primarily based on Markov kernels, have been studied extensively [34, 128, 129].

Our semantics is also related to the work on event structures [125, 172]. A

(Prob)NetKAT program denotes a simple (probabilistic) event structure: packet his-

tories are events with causal dependency given by extension and with all finite subsets

consistent. We have to yet explore whether the event structure perspective on our

semantics could lead to further applications and connections to e.g. (concurrent) games.

Networking. Network calculus is a general framework for analyzing network behavior

using tools from queuing theory [28]. It has been used to reason about quantitative

104



properties such as latency, bandwidth, and congestion. The stochastic branch of network

calculus provides tools for reasoning about the probabilistic behavior, especially in the

presence of statistical multiplexing, but is often considered difficult to use. In contrast,

ProbNetKAT is a self-contained framework based on a precise denotational semantics.

Traffic engineering has been extensively studied and a wide variety of approaches

have been proposed for data-center networks [4, 69, 133, 161, 180] and wide-area

networks [9, 42, 61, 64, 68, 75, 141, 166]. These approaches optimize for metrics such

as congestion, throughput, latency, fault tolerance, fairness etc. Optimal techniques

typically have high overheads [29], but oblivious [9, 83] and hybrid approaches with

near-optimal performance [64, 68] have recently been adopted.

3.11 Conclusion

This chapter presents a new order-theoretic semantics for ProbNetKAT in the style of

classical domain theory. The semantics allows a standard least-fixpoint treatment of

iteration, and enables new modes of reasoning about the probabilistic network behavior.

We have used these theoretical tools to analyze several randomized routing protocols on

real-world data.

The main technical insight is that all programs and the operators defined on them

are continuous, provided we consider the right notion of continuity: that induced by the

Scott topology. Continuity enables precise approximation, and we exploited this to build

an implementation. But continuity is also a powerful tool for reasoning that we expect

to be very helpful in the future development of ProbNetKAT’s meta theory. To establish

continuity we had to switch from the Cantor to the Scott topology, and give up reasoning

in terms of a metric. Luckily we were able to show a strong correspondence between

the two topologies and that the Cantor-perspective and the Scott-perspective lead to

equivalent definitions of the semantics. This allows us to choose whichever perspective

105



is best-suited for the task at hand.

Future Work. The results of this chapter are general enough to accommodate arbitrary

extensions of ProbNetKAT with continuous Markov kernels or continuous operators on

such kernels. An obvious next step is therefore to investigate extension of the language

that would enable richer network models. Previous work on deterministic NetKAT

included a decision procedure and a sound and complete axiomatization. In the presence

of probabilities we expect a decision procedure will be hard to devise, as witnessed by

several undecidability results on probabilistic automata. We intend to explore decision

procedures for restricted fragments of the language. Another interesting direction is to

compile ProbNetKAT programs into suitable automata that can then be analyzed by a

probabilistic model checker such as PRISM [101]. A sound and complete axiomatization

remains subject of further investigation, we can draw inspiration from recent work

[94, 109]. Another opportunity is to investigate a weighted version of NetKAT, where

instead of probabilities we consider weights from an arbitrary semiring, opening up

several other applications—e.g. in cost analysis. Finally, we would like to explore

efficient implementation techniques including compilation, as well as approaches based

on sampling, following several other probabilistic languages [19, 130].

106



Chapter 4

Scalable Verification

“Take it to the limit, take it to the limit.

Take it to the limit one more time.”

—Eagles

This chapter presents McNetKAT, a scalable tool for verifying probabilistic network pro-

grams. McNetKAT is based on a new semantics for the guarded and history-free fragment

of Probabilistic NetKAT in terms of finite-state, absorbing Markov chains. This view

allows the semantics of all programs to be computed exactly, enabling construction of an

automatic verification tool. Domain-specific optimizations and a parallelizing backend

enable McNetKAT to analyze networks with thousands of nodes, automatically reasoning

about general properties such as probabilistic program equivalence and refinement, as

well as networking properties such as resilience to failures. We evaluate McNetKAT’s

scalability using real-world topologies, compare its performance against state-of-the-art

tools, and develop an extended case study on a recently proposed data center network

design.

107



4.1 Introduction

Networks are among the most complex and critical computing systems used today. Re-

searchers have long sought to develop automated techniques for modeling and analyzing

network behavior [177], but only over the last decade has programming language

methodology been brought to bear on the problem [20, 22, 113], opening up new av-

enues for reasoning about networks in a rigorous and principled way [6, 45, 77, 79, 105].

Building on these initial advances, researchers have begun to target more sophisticated

networks that exhibit richer phenomena. In particular, there is renewed interest in

randomization as a tool for designing protocols and modeling behaviors that arise in

large-scale systems—from uncertainty about the inputs, to expected load, to likelihood

of device and link failures.

Although programming languages for describing randomized networks exist [44,

49], support for automated reasoning remains limited. Even basic properties require

quantitative reasoning in the probabilistic setting, and seemingly simple programs

can generate complex distributions. Whereas state-of-the-art tools can easily handle

deterministic networks with hundreds of thousands of nodes, probabilistic tools are

currently orders of magnitude behind.

This chapter presents McNetKAT, a new tool for reasoning about probabilistic net-

work programs written in the guarded and history-free fragment of Probabilistic NetKAT

(ProbNetKAT) [6, 44, 45, 165]. ProbNetKAT is an expressive programming language

based on Kleene Algebra with Tests, capable of modeling a variety of probabilistic

behaviors and properties including randomized routing [99, 171], uncertainty about

demands [147], and failures [51]. The history-free fragment restricts the language

semantics to input-output behavior rather than tracking paths, and the guarded fragment

provides conditionals and while loops rather than union and iteration operators. Al-

108



though the fragment we consider is a restriction of the full language, it is still expressive

enough to encode a wide range of practical networking models. Existing determinis-

tic tools, such as Anteater [108], HSA [77], and Veriflow [79], also use guarded and

history-free models.

To enable automated reasoning, we first reformulate the semantics of ProbNetKAT

in terms of finite state Markov chains. We introduce a big-step semantics that models

programs as Markov chains that transition from input to output in a single step, using

an auxiliary small-step semantics to compute the closed-form solution for the semantics

of the iteration operator. We prove that the Markov chain semantics coincides with the

domain-theoretic semantics for ProbNetKAT developed in Chapter 3. Our new semantics

also has a key benefit: the limiting distribution of the resulting Markov chains can be

computed exactly in closed form, yielding a concise representation that can be used as

the basis for building a practical tool.

We have implemented McNetKAT in an OCaml prototype that takes a ProbNetKAT

program as input and produces a stochastic matrix that models its semantics in a finite

and explicit form. McNetKAT uses the UMFPACK linear algebra library as a back-end

solver to efficiently compute limiting distributions [30], and exploits algebraic properties

to automatically parallelize the computation across multiple machines. To facilitate

comparisons with other tools, we also developed a back-end based on PRISM [100].

To evaluate the scalability of McNetKAT, we conducted experiments on realistic

topologies, routing schemes, and properties. Our results show that McNetKAT scales to

networks with thousands of switches, and performs orders of magnitude better than

a state-of-the-art tool based on general-purpose symbolic inference [49, 50]. We also

used McNetKAT to carry out a case study of the resilience of a fault-tolerant data center

design proposed by Liu et al. [106].

109



Switch 1 Switch 2

Switch 3

Source Destination

1 2
3

1
3

2

1 2

Figure 4.1: Network topology for running example.

Contributions and outline. The central contribution of this chapter is the development

of a scalable probabilistic network verification tool. We develop a new, tractable semantics

that is sound with respect to ProbNetKAT’s original denotational model. We present a

prototype implementation and evaluate it on a variety of scenarios drawn from real-

world networks. In Section 4.2, we introduce ProbNetKAT using a running example.

In Section 4.3, we present a semantics based on finite stochastic matrices and show

that it fully characterizes the behavior of ProbNetKAT programs (Theorem 4.3.1). In

Section 4.4, we show how to compute the matrix associated with iteration in closed form.

In Section 4.5, we discuss our implementation, including symbolic data structures and

optimizations that are needed to handle the large state space efficiently. In Section 4.6,

we evaluate the scalability of McNetKAT on a common data center design and compare

its performance against state-of-the-art probabilistic tools. In Section 4.7, we present

a case study using McNetKAT to analyze resilience in the presence of link failures. We

survey related work in Section 4.8 and conclude in Section 4.9. We defer proofs to

appendix Appendix B.

4.2 Overview

This section introduces a running example that illustrates the main features of the

ProbNetKAT language as well as some quantitative network properties that arise in

practice.

110



Background on ProbNetKAT. Consider the network in Figure 4.1, which connects

a source to a destination in a topology with three switches. We will first introduce a

program that forwards packets from the source to the destination, and then verify that it

correctly implements the desired behavior. Next, we will show how to enrich our program

to model the possibility of link failures, and develop a fault-tolerant forwarding scheme

that automatically routes around failures. Using a quantitative version of program

refinement, we will show that the fault-tolerant program is indeed more resilient than

the initial program. Finally, we will show how to compute the expected degree of

resilience analytically.

To a first approximation, a ProbNetKAT program can be thought of as a randomized

function that maps input packets to sets of output packets. Packets are modeled as

records, with fields for standard headers—such as the source (src) and destination

(dst) addresses—as well as two fields switch (sw) and port (pt) encoding the current

location of the packet. ProbNetKAT provides several primitives for manipulating packets:

a modification f �n returns the input packet with field f updated to n, while a test f =n

returns either the input packet unmodified if the test succeeds, or the empty set if the

test fails. The primitives skip and drop behave like a test that always succeeds and fails,

respectively. In the guarded fragment of the language, programs can be composed

sequentially (p · q), using conditionals (if p then q1 else q2), while loops (while p do q),

or probabilistic choice (p⊕ q).

Although ProbNetKAT programs can be freely constructed by composing primitive

operations, a typical network model is expressed using two programs: a forwarding

program (sometimes called a policy) and a link program (sometimes called a topology).

The forwarding program describes how packets are transformed locally by the switches

at each hop. In our running example, to route packets from the source to the destination,

switches 1 and 2 can simply forward all incoming packets out on port 2 by modifying

111



the port field (pt). This program can be encoded in ProbNetKAT by performing a case

analysis on the location of the input packet, and then setting the port field to 2:

p := if sw=1 then pt�2 else

if sw=2 then pt�2 else drop

The final drop at the end of this program encodes the policy for switch 3, which is

unreachable.

We can model the topology as a cascade of conditionals that match packets at the

end of each link and update their locations to the link’s destination:

t := if sw=1 · pt=2 then sw�2 · pt�1 else . . .

To build the overall network model, we first define predicates for the ingress and egress

locations,

in := sw=1 · pt=1 out := sw=2 · pt=2

and then combine the forwarding policy p with the topology t. More specifically, a packet

traversing the network starts at an ingress and is repeatedly processed by switches and

links until it reaches an egress:

M(p, t) := in · p · while ¬out do (t · p)

We can now state and prove properties about the network by reasoning about this

model. For instance, the following equivalence states that p forwards all packets to the

destination:

M(p, t) ≡ in · sw�2 · pt�2

The program on the right can be regarded as an ideal specification that “teleports” each

packet to its destination. Such equations were also used in previous work to reason

about properties such as waypointing, reachability, isolation, and loop freedom [6, 45].

112



Probabilistic reasoning. Real-world networks often exhibit nondeterministic behav-

iors such as fault tolerant routing schemes to handle unexpected failures [106] and

randomized algorithms to balance load across multiple paths [99]. Verifying that net-

works behave as expected in these more complicated scenarios requires a form of

probabilistic reasoning, but most state-of-the-art network verification tools model only

deterministic behaviors [45, 77, 79].

To illustrate, suppose we want to extend our example with link failures. Most

modern switches execute low-level protocols such as Bidirectional Forwarding Detection

(BFD) that compute real-time health information about the link connected to each

physical port [15]. We can enrich our model so that each switch has a boolean flag upi

that indicates whether the link connected to the switch at port i is up. Then, we can

adjust the forwarding logic to use backup paths when the link is down: for switch 1,

p̂1 := if up2=1 then pt�2 else

if up2=0 then pt�3 else drop

and similarly for switches 2 and 3. As before, we can package the forwarding logic for all

switches into a single program:

p̂ := if sw=1 then p̂1 else if sw=2 then p̂2 else p̂3

Next, we update the encoding of our topology to faithfully model link failures. Links

can fail for a wide variety of reasons, including human errors, fiber cuts, and hardware

faults. A natural way to model such failures is with a probabilistic model—i.e., with a

distribution that captures how often certain links fail:

f0 := up2�1 · up3�1

f1 := ⊕
{
f0 @ 1

2
, (up2�0 · up3�1) @ 1

4
, (up2�1 · up3�0) @ 1

4

}
f2 := (up2�1⊕.8 up2�0) · (up3�1⊕.8 up3�0)

113



Intuitively, in f0 no links fail, in f1 the links ℓ12 and ℓ13 fail with probability 25% but at

most one link fails, while in f2 the links fail independently with probability 20%. Using

the up flags, we can model a topology with possibly faulty links like so:

t̂ := if sw=1 · pt=2 · up2=1 then sw�2 · pt�1 else . . .

Combining the policy, topology, and failure model yields a model of the entire network:

M̂(p, t, f) := var up2�1 in

var up3�1 in

M((f · p), t)

This refined model M̂ wraps our previous model M with declarations of the two local

fields up2 and up3 and executes the failure model (f) at each hop before executing the

programs for the switch (p) and topology (t).

Now we can analyze our resilient routing scheme p̂. As a sanity check, we can

verify that it delivers packets to their destinations in the absence of failures. Formally, it

behaves like the program that teleports packets to their destinations:

M̂(p̂, t̂, f0) ≡ in · sw�2 · pt�2

More interestingly, p̂ is 1-resilient—i.e., it delivers packets provided at most one link fails.

Note that this property does not hold for the original, naive routing scheme p:

M̂(p̂, t̂, f1) ≡ in · sw�2 · pt�2 ̸≡ M̂(p, t̂, f1)

While p̂ is not fully resilient under failure model f2, which allows two links to fail

simultaneously, we can still show that the refined routing scheme p̂ performs strictly

better than the naive scheme p by checking

M̂(p, t̂, f2) < M̂(p̂, t̂, f2)

114



where p < q intuitively means that q delivers packets with higher probability than p.

Going a step further, we might want to compute more general quantitative properties

of the distributions generated for a given program. For example, we might compute

the probability that each routing scheme delivers packets to the destination under f2

(i.e., 80% for the naive scheme and 96% for the resilient scheme), potentially valuable

information to help an Internet Service Provider (ISP) evaluate a network design to

check that it meets certain service-level agreements (SLAs). With this motivation in mind,

we aim to build a scalable tool that can carry out automated reasoning on probabilistic

network programs expressed in ProbNetKAT.

4.3 ProbNetKAT Syntax and Semantics

This section reviews the syntax of ProbNetKAT and presents a new semantics based on

finite state Markov chains.

Preliminaries. A packet π is a record mapping a finite set of fields f1, f2, . . . , fk to

bounded integers n. As we saw in the previous section, fields can include standard

header fields such as source (src) and destination (dst) addresses, as well as logical

fields for modeling the current location of the packet in the network or variables such as

upi. These logical fields are not present in a physical network packet, but they can track

auxiliary information for the purposes of verification. We write π.f to denote the value

of field f of π and π[f :=n] for the packet obtained from π by updating field f to hold n.

We let Pk denote the (finite) set of all packets.

Syntax. ProbNetKAT terms can be divided into two classes: predicates (t, u, . . .) and

programs (p, q, . . .). Primitive predicates include tests (f =n) and the Boolean constants

false (drop) and true (skip). Compound predicates are formed using the usual Boolean

115



connectives: disjunction (t&u), conjunction (t·u), and negation (¬t). Primitive programs

include predicates (t) and assignments (f �n). The original version of the language also

provides a dup primitive, which logs the current state of the packet, but the history-

free fragment omits this operation. Compound programs can be formed using parallel

composition (p & q), sequential composition (p · q), and iteration (p∗). In addition, the

probabilistic choice operator p ⊕r q executes p with probability r and q with probability

1− r, where r is rational, 0 ≤ r ≤ 1. We sometimes use an n-ary version and omit the

r’s: p1 ⊕ · · · ⊕ pn executes a pi chosen uniformly at random. In addition to these core

constructs (summarized in Figure 4.2), many other useful constructs can be derived. For

example, mutable local variables (e.g., upi, used to track link health in Section 4.2), can

be desugared into the language:

var f �n in p := f �n · p · f �0

Here f is a field that is local to p. The final assignment f �0 sets the value of f to a

canonical value, “erasing” it after the field goes out of scope. We often use local variables

to record extra information for verification—e.g., recording whether a packet traversed a

given switch allows reasoning about simple waypointing and isolation properties, even

though the history-free fragment of ProbNetKAT does not model paths directly.

Guarded fragment. Conditionals and while loops can be encoded using union and

iteration:
if t then p else q := t · p& ¬t · q

while t do p := (t · p)∗ · ¬t

Note that these constructs use the predicate t as a guard, resolving the inherent nonde-

terminism in the union and iteration operators. Our implementation handles programs

in the guarded fragment of the language—i.e., with loops and conditionals but with-

out union and iteration—though we will develop the theory in full generality here, to

116



Syntax

Naturals n ::= 0 | 1 | 2 | · · ·
Fields f ::= f1 | · · · | fk

Packets Pk ∋ π ::= {f1 = n1, . . . , fk = nk}
Probabilities r ∈ [0, 1] ∩Q

Predicates t, u ::= drop False
| skip True
| f =n Test
| t& u Disjunction
| t · u Conjunction
| ¬t Negation

Programs p, q ::= t Filter
| f �n Assignment
| p& q Union
| p · q Sequence
| p ⊕r q Choice
| p∗ Iteration

Semantics BJpK ∈ S(2Pk)

BJdropKab := [b = ∅]

BJskipKab := [a = b]

BJf=nKab := [b = {π ∈ a | π.f = n}]
BJ¬tKab := [b ⊆ a] · BJtKa,a−b

BJf�nKab := [b = {π[f := n] | π ∈ a}]
BJp& qKab :=∑

c,d

[c ∪ d = b] · BJpKa,c · BJqKa,d

BJp · qK := BJpK · BJqK

BJp⊕r qK := r · BJpK + (1− r) · BJqK

BJp∗Kab := lim
n→∞

BJp(n)Kab

Figure 4.2: History-free ProbNetKAT: syntax and semantics. The matrix entry BJpKab
gives the probability that program p produces output b on input a.

make connections to previous work on ProbNetKAT clearer. We believe this restriction

is acceptable from a practical perspective, as the main purpose of union and iteration

is to encode forwarding tables and network-wide processing, and the guarded variants

can often perform the same task. A notable exception is multicast, which cannot be

expressed in the guarded fragment.

Semantics. Previous work on ProbNetKAT [44] modeled history-free programs as maps

2Pk → D(2Pk), where D(2Pk) denotes the set of probability distributions on 2Pk. This

semantics is useful for establishing fundamental properties of the language, but we will

need a more explicit representation to build a practical verification tool. Since the set

of packets is finite, probability distributions over sets of packets are discrete and can be

characterized by a probability mass function, f : 2Pk → [0, 1] such that
∑

b⊆Pk f(b) = 1. It

will be convenient to view f as a stochastic vector of non-negative entries that sum to 1.

117



A program, which maps inputs a to distributions over outputs, can then be repre-

sented by a square matrix indexed by Pk in which the stochastic vector corresponding

to input a appears as the a-th row. Thus, we can interpret a program p as a matrix

BJpK ∈ [0, 1]2
Pk×2Pk indexed by packet sets, where the matrix entry BJpKab gives the prob-

ability that p produces output b ∈ 2Pk on input a ∈ 2Pk. The rows of the matrix BJpK

are stochastic vectors, each encoding the distribution produced for an input set a; such

a matrix is called right-stochastic, or simply stochastic. We write S(2Pk) for the set of

right-stochastic matrices indexed by 2Pk.

Figure 4.2 defines an interpretation of ProbNetKAT programs as stochastic matrices;

the Iverson bracket [φ] is 1 if φ is true, and 0 otherwise. Deterministic program primitives

are interpreted as {0, 1}-matrices—e.g., the program primitive drop is interpreted as the

following stochastic matrix:

BJdropK =


∅ b2 ... bn

∅ 1 0 · · · 0
...

...
... . . . ...

an 1 0 · · · 0


a2
...

an

a1 = ∅

1

1

1 (4.1)

which assigns all probability mass to the ∅-column. Similarly, skip is interpreted as the

identity matrix. Sequential composition can be interpreted as matrix product,

BJp · qKab =
∑
c

BJpKac · BJqKcb = (BJpK · BJqK)ab

which reflects the intuitive semantics of composition: to step from a to b in BJp · qK, one

must step from a to an intermediate state c in BJpK, and then from c to b in BJqK.

As the picture in (4.1) suggests, a stochastic matrix B ∈ S(2Pk) can be viewed as

a Markov chain (MC)—i.e., a probabilistic transition system with state space 2Pk. The

entry Bab gives the probability that the system transitions from a to b.

Soundness. The matrix BJpK is equivalent to the denotational semantics JpK defined in

Chapter 3 (see Appendix B for a detailed discussion and proof).

118



Theorem 4.3.1 (Soundness). Let a, b ∈ 2Pk. The matrix BJpK satisfies BJpKab = JpK(a)({b}).

Hence, checking program equivalence for p and q reduces to checking equality of

the matrices BJpK and BJqK.

Corollary 4.3.2. JpK = JqK if and only if BJpK = BJqK.

In particular, because the Markov chains are all finite state, the transition matrices

are finite dimensional with rational entries. Accordingly, program equivalence and

other quantitative properties can be automatically verified provided we can compute the

matrices for given programs. This is relatively straightforward for program constructs

besides BJp∗K, whose matrix is defined in terms of a limit. The next section presents a

closed-form definition of the stochastic matrix for this operator.

4.4 Computing Stochastic Matrices

The semantics developed in the previous section can be viewed as a “big-step” semantics

in which a single step models the execution of a program from input to output. To

compute the semantics of p∗, we will introduce a finer, “small-step” chain in which a

transition models one iteration of the loop.

To build intuition, consider simulating p∗ using a transition system with states given

by triples ⟨p, a, b⟩ in which p is the program being executed, a is the set of (input) packets,

and b is an accumulator that collects the output packets generated so far. To model the

execution of p∗ on input a, we start from the initial state ⟨p∗, a,∅⟩ and unroll p∗ one

iteration according to the characteristic equation p∗ ≡ skip& p · p∗, yielding the following

transition:

⟨p∗, a,∅⟩ 1−−−−−→ ⟨skip& p · p∗, a,∅⟩

119



⟨p∗, a, b⟩ ⟨skip& p · p∗, a, b⟩ ⟨p · p∗, a, b ∪ a⟩

⟨p∗, a′, b ∪ a⟩

1 1

BJpKa,a′
BJpKa,a ′

Figure 4.3: The small-step semantics is given by a Markov chain with states of the form
⟨program, input set, output accumulator⟩. The three dashed arrows can be collapsed into
the single solid arrow, rendering the program component superfluous.

Next, we execute both skip and p · p∗ on the input set and take the union of their results.

Executing skip yields the input set as output, with probability 1:

⟨skip& p · p∗, a,∅⟩ 1−−−−−→ ⟨p · p∗, a, a⟩

Executing p · p∗, executes p and feeds its output into p∗:

∀a′ : ⟨p · p∗, a, a⟩
BJpKa,a′−−−−−→ ⟨p∗, a′, a⟩

At this point we are back to executing p∗, albeit with a different input set a′ and some

accumulated output packets. The resulting Markov chain is shown in Figure 4.3.

Note that as the first two steps of the chain are deterministic, we can simplify the

transition system by collapsing all three steps into one, as illustrated in Figure 4.3. The

program component can then be dropped, as it now remains constant across transitions.

Hence, we work with a Markov chain over the state space 2Pk × 2Pk, defined formally as

follows:

SJpK ∈ S(2Pk × 2Pk)

SJpK(a,b),(a′,b′) := [b′ = b ∪ a] · BJpKa,a′ .

We can verify that the matrix SJpK defines a Markov chain.

Lemma 4.4.1. SJpK is stochastic.

120



Next, we show that each step in SJpK models an iteration of p∗. Formally, the

(n+ 1)-step of SJpK is equivalent to the big-step behavior of the n-th unrolling of p∗.

Proposition 4.4.2. BJp(n)Ka,b =
∑

a′ SJpKn+1
(a,∅),(a′,b)

Direct induction on the number of steps n ≥ 0 fails because the hypothesis is too

weak. We generalize from start states with empty accumulator to arbitrary start states.

Lemma 4.4.3. Let p be program. Then for all n ∈ N and a, b, b′ ⊆ Pk, we have∑
a′

[b′ = a′ ∪ b] · BJp(n)Ka,a′ =
∑
a′

SJpKn+1
(a,b),(a′,b′).

Proposition 4.4.2 then follows from Lemma 4.4.3 with b = ∅.

Intuitively, the long-run behavior of SJpK approaches the big-step behavior of p∗:

letting (an, bn) denote the random state of the Markov chain SJpK after taking n steps

starting from (a,∅), the distribution of bn for n → ∞ is precisely the distribution of

outputs generated by p∗ on input a (by Proposition 4.4.2 and the definition of BJp∗K).

Closed form. The limiting behavior of finite state Markov chains has been well studied

in the literature (e.g., see Kemeny and Snell [78]). For so-called absorbing Markov chains,

the limit distribution can be computed exactly. A state s of a Markov chain T is absorbing

if it transitions to itself with probability 1,

s 1 (formally: Ts,s′ = [s = s′])

and a Markov chain T ∈ S(S) is absorbing if each state can reach an absorbing state:

∀s ∈ S. ∃s′ ∈ S, n ≥ 0. T n
s,s′ > 0 and Ts′,s′ = 1

The non-absorbing states of an absorbing MC are called transient. Assume T is absorbing

with nt transient states and na absorbing states. After reordering the states so that

absorbing states appear first, T has the form

T =

[
I 0

R Q

]

121



where I is the na × na identity matrix, R is an nt × na matrix giving the probabilities of

transient states transitioning to absorbing states, and Q is an nt × nt matrix specifying

the probabilities of transitions between transient states. Since absorbing states never

transition to transient states by definition, the upper right corner contains a na × nt zero

matrix.

From any start state, a finite state absorbing MC always ends up in an absorbing

state eventually, i.e. the limit T∞ := limn→∞ T n exists and has the form

T∞ =

[
I 0

A 0

]

where the nt × na matrix A contains the so-called absorption probabilities. This matrix

satisfies the following equation:

A = (I +Q+Q2 + . . . )R

Intuitively, to transition from a transient state to an absorbing state, the MC can take an

arbitrary number of steps between transient states before taking a single—and final—step

into an absorbing state. The infinite sum X :=
∑

n≥0Q
n satisfies X = I + QX, and

solving for X yields

X = (I −Q)−1 and A = (I −Q)−1R. (4.2)

(We refer the reader to Kemeny and Snell [78] for the proof that the inverse exists.)

Before we apply this theory to the small-step semantics SJ−K, it will be useful to

introduce some MC-specific notation. Let T be an MC. We write s
T−→n s′ if s can reach

s′ in precisely n steps, i.e. if T n
s,s′ > 0; and we write s

T−→ s′ if s can reach s′ in some

number of steps, i.e. if T n
s,s′ > 0 for some n ≥ 0. Two states are said to communicate,

denoted s
T←→ s′, if s T−→ s′ and s′

T−→ s. The relation T←→ is an equivalence relation, and its

equivalence classes are called communication classes. A communication class is absorbing

if it cannot reach any states outside the class. Let Pr[s
T−→n s′] denote the probability T n

s,s′ .

122



For the rest of the section, we fix a program p and abbreviate BJpK as B and SJpK as S.

We also define saturated states, those where the accumulator has stabilized.

Definition 4.4.4. A state (a, b) of S is called saturated if b has reached its final value, i.e.

if (a, b) S−→ (a′, b′) implies b′ = b.

After reaching a saturated state, the output of p∗ is fully determined. The probability

of ending up in a saturated state with accumulator b, starting from an initial state (a,∅),

is

lim
n→∞

∑
a′

Sn
(a,∅),(a′,b)

and, indeed, this is the probability that p∗ outputs b on input a by Proposition 4.4.2.

Unfortunately, we cannot directly compute this limit since saturated states are not

necessarily absorbing. To see this, consider p∗ = (f �0 ⊕1/2 f �1)∗ over a single {0, 1}-

valued field f . Then S has the form

0, 0 0, {0, 1}

0,∅

1, 0 1, {0, 1}

where all edges are implicitly labeled with 1
2
, and 0 and 1 denote the packets with f set

to 0 and 1 respectively. We omit states not reachable from (0,∅). The right-most states

are saturated, but they communicate and are thus not absorbing.

To align saturated and absorbing states, we can perform a quotient of this Markov

chain by collapsing the communicating states. We define an auxiliary matrix,

U(a,b),(a′,b′) := [b′ = b] ·

[a′ = ∅] if (a, b) is saturated

[a′ = a] else

which sends a saturated state (a, b) to a canonical saturated state (∅, b) and acts as the

identity on all other states. In our example, the modified chain SU is as follows:

123



0, 0 0, {0, 1}

0,∅ ∅, {0, 1}

1, 0 1, {0, 1}

and indeed is absorbing, as desired.

Lemma 4.4.5. S, U , and SU are monotone in the sense that: (a, b)
S−→ (a′, b′) implies

b ⊆ b′ (and similarly for U and SU).

Proof. By definition (S and U) and by composition (SU).

Next, we show that SU is an absorbing MC:

Proposition 4.4.6. Let n ≥ 1.

1. (SU)n = SnU

2. SU is an absorbing MC with absorbing states {(∅, b)}.

Arranging the states (a, b) in lexicographically ascending order according to ⊆ and

letting n = |2Pk|, it then follows from Proposition 4.4.6.2 that SU has the form

SU =

[
In 0

R Q

]

where, for a ̸= ∅, we have

(SU)(a,b),(a′,b′) =
[
R Q

]
(a,b),(a′,b′)

.

Moreover, SU converges and its limit is given by

(SU)∞ :=

[
In 0

(I −Q)−1R 0

]
= lim

n→∞
(SU)n. (4.3)

Putting together the pieces, we can use the modified Markov chain SU to compute the

limit of S.

124



Network model Symbolic IR Sparse matrix

if pt=1 then
pt�2 ⊕0.5 pt�3

else if pt=2 then
pt�1

else if pt=3 then
pt�1

else
drop

pt�2⊕0.5 pt�3 pt�1 drop

pt=3

pt=2

pt=1 

∅ pt=1 pt=2 pt=3 pt=∗

∅ 1

pt=1
1
2

1
2

pt=2 1

pt=3 1

pt=∗ 1


Compile Convert

Solve

Figure 4.4: Implementation using FDDs and a sparse linear algebra solver.

Theorem 4.4.7 (Closed Form). Let a, b, b′ ⊆ Pk. Then

lim
n→∞

∑
a′

Sn
(a,b),(a′,b′) = (SU)∞(a,b),(∅,b′).

The limit exists and can be computed exactly, in closed-form.

4.5 Implementation

We have implemented McNetKAT as an embedded DSL in OCaml in roughly 10KLoC.

The frontend provides functions for defining and manipulating ProbNetKAT programs

and for generating such programs automatically from network topologies encoded

using Graphviz. These programs can then be analyzed by one of two backends: the

native backend (PNK), which compiles programs to (symbolically represented) stochastic

matrices; or the PRISM-based backend (PPNK), which emits inputs for the state-of-the-art

probabilistic model checker PRISM [101].

Pragmatic restrictions. Although our semantics developed in Section 4.3 and Sec-

tion 4.4 theoretically supports computations on sets of packets, a direct implementation

would be prohibitively expensive—the matrices are indexed by the powerset 2Pk of the

universe of all possible packets! To obtain a practical analysis tool, we restrict the state

125



space to single packets. At the level of syntax, we restrict to the guarded fragment of

ProbNetKAT, i.e. to programs with conditionals and while loops, but without union and

iteration. This ensures that no proper packet sets are ever generated, thus allowing us to

work over an exponentially smaller state space. While this restriction does rule out some

uses of ProbNetKAT—most notably, modeling multicast—we did not find this to be a

serious limitation because multicast is relatively uncommon in probabilistic networking.

If needed, multicast can often be modeled using multiple unicast programs.

4.5.1 Native Backend

The native backend compiles a program to a symbolic representation of its big step matrix.

The translation, illustrated in Figure 4.4, proceeds as follows. First, we translate atomic

programs to Forwarding Decision Diagrams (FDDs), a symbolic data structure based

on Binary Decision Diagrams (BDDs) that encodes sparse matrices compactly [164].

Second, we translate composite programs by first translating each sub-program to an

FDD and then merging the results using standard BDD algorithms. Loops require special

treatment: we (i) convert the FDD for the body of the loop to a sparse stochastic matrix,

(ii) compute the semantics of the loop by using an optimized sparse linear solver [30] to

solve the system from Section 4.4, and finally (iii) convert the resulting matrix back to

an FDD. We use exact rational arithmetic in the frontend and FDD-backend to preempt

concerns about numerical precision, but trust the linear algebra solver UMFPACK (based

on 64 bit floats) to provide accurate solutions.1 Our implementation relies on several

optimizations; we detail two of the more interesting ones below.

Probabilistic FDDs. Binary Decision Diagrams [2] and variants thereof [46] have long

been used in verification and model checking to represent large state spaces compactly.

1UMFPACK is a mature library powering widely-used scientific computing packages such as MATLAB
and SciPy.

126



A variant called Forwarding Decision Diagrams (FDDs) [164] was previously developed

specifically for the networking domain, but only supported deterministic behavior. In this

work, we extended FDDs to probabilistic FDDs. A probabilistic FDD is a rooted directed

acyclic graph that can be understood as a control-flow graph. Interior nodes test packet

fields and have outgoing true- and false- branches, which we visualize by solid lines and

dashed lines in Figure 4.4. Leaf nodes contain distributions over actions, where an action

is either a set of modifications or a special action drop. To interpret an FDD, we start

at the root node with an initial packet and traverse the graph as dictated by the tests

until a leaf node is reached. Then, we apply each action in the leaf node to the packet.

Thus, an FDD represents a function of type Pk→ D(Pk+∅), or equivalently, a stochastic

matrix over the state space Pk+∅ where the ∅-row puts all mass on ∅ by convention.

Like BDDs, FDDs respect a total order on tests and contain no isomorphic subgraphs or

redundant tests, which enables representing sparse matrices compactly.

Dynamic domain reduction. As Figure 4.4 shows, we do not have to represent the

state space Pk + ∅ explicitly even when converting into sparse matrix form. In the

example, the state space is represented by symbolic packets pt = 1, pt = 2, pt = 3,

and pt = ∗, each representing an equivalence class of packets. For example, pt = 1 can

represent all packets π satisfying π.pt = 1, because the program treats all such packets

in the same way. The packet pt = ∗ represents the set {π | π.pt ̸∈ {1, 2, 3}}. The symbol

∗ can be thought of as a wildcard that ranges over all values not explicitly represented by

other symbolic packets. The symbolic packets are chosen dynamically when converting

an FDD to a matrix by traversing the FDD and determining the set of values appearing in

each field, either in a test or a modification. Since FDDs never contain redundant tests

or modifications, these sets are typically of manageable size.

127



4.5.2 PRISM Backend

PRISM is a mature probabilistic model checker that has been actively developed and

improved for the last two decades. The tool takes as input a Markov chain model

specified symbolically in PRISM’s input language and a property specified using a logic

such as Probabilistic CTL, and outputs the probability that the model satisfies the property.

PRISM supports various types of models including finite state Markov chains, and can

thus be used as a backend for reasoning about ProbNetKAT programs using our results

from Section 4.3 and Section 4.4. Accordingly, we implemented a second backend that

translates ProbNetKAT to PRISM programs. While the native backend computes the big

step semantics of a program—a costly operation that may involve solving linear systems

to compute fixed points—the PRISM backend is a purely syntactic transformation; the

heavy lifting is done by PRISM itself.

A PRISM program consists of a set of bounded variables together with a set of

transition rules of the form

φ → p1 · u1 + · · ·+ pk · uk

where φ is a Boolean predicate over the variables, the pi are probabilities that must sum

up to one, and the ui are sequences of variable updates. The predicates are required to

be mutually exclusive and exhaustive. Such a program encodes a Markov chain whose

state space is given by the finite set of variable assignments and whose transitions are

dictated by the rules: if φ is satisfied under the current assignment σ and σi is obtained

from σ by performing update ui, then the probability of a transition from σ to σi is pi.

It is easy to see that any PRISM program can be expressed in ProbNetKAT, but the

reverse direction is slightly tricky: it requires the introduction of an additional variable

akin to a program counter to emulate ProbNetKAT’s control flow primitives such as loops

and sequences. As an additional challenge, we must be economical in our allocation of

128



the program counter, since the performance of model checking is very sensitive to the

size of the state space.

We address this challenge in three steps. First, we translate the ProbNetKAT program

to a finite state machine using a Thompson-style construction [169]. Each edge is labeled

with a predicate φ, a probability pi, and an update ui, subject to the following well-

formedness conditions:

1. For each state, the predicates on its outgoing edges form a partition.

2. For each state and predicate, the probabilities of all outgoing edges guarded by

that predicate sum to one.

Intuitively, the state machine encodes the control-flow graph.

This intuition serves as the inspiration for the next translation step, which collapses

each basic block of the graph into a single state. This step is crucial for reducing the state

space, since the state space of the initial automaton is linear in the size of the program.

Finally, we obtain a PRISM program from the automaton as follows: for each state s with

adjacent predicate φ and φ-guarded outgoing edges s
φ/pi/ui−−−−→ ti for 1 ≤ i ≤ k, produce a

PRISM rule

(pc=s ∧ φ) → p1 · (u1 · pc�t1) + · · ·+ pk · (uk · pc�tk).

The well-formedness conditions of the state machine guarantee that the resulting pro-

gram is a valid PRISM program. With some care, the entire translation can be imple-

mented in linear time. Indeed, McNetKAT translates all programs in our evaluation to

PRISM in under a second.

4.6 Evaluation

To evaluate McNetKAT we conducted experiments on several benchmarks including a

family of real-world data center topologies and a synthetic benchmark drawn from the

129



s1 s2 s3 s4 s5 s6 s7 s8

Figure 4.5: A FatTree topology with p = 4 ports per switch.

102 103 104

Number of switches

100

101

102

103

Ti
m

e 
(s

ec
on

ds
)

PRISM
PRISM (#f=0)
native
native (#f=0)

Figure 4.6: Scalability on a family of data center topologies.

literature [49]. We evaluated McNetKAT’s scalability, characterized the effect of opti-

mizations, and compared performance against other state-of-the-art tools. All McNetKAT

running times we report refer to the time needed to compile programs to FDDs; the

cost of comparing FDDs for equivalence and ordering, or of computing statistics of the

encoded distributions, is negligible. All experiments were performed on machines with

16-core, 2.6 GHz Intel Xeon E5-2650 processors with 64 GB of memory.

130



Scalability on FatTree topologies. We first measured the scalability of McNetKAT by

using it to compute network models for a series of FatTree topologies of increasing size.

FatTrees [3] (see also Figure 4.5) are multi-level, multi-rooted trees that are widely used

as topologies in modern data centers. FatTrees can be specified in terms of a parameter

p corresponding to the number of ports on each switch. A p-ary FatTree connects 1
4
p3

servers using 5
4
p2 switches. To route packets, we used a form of Equal-Cost Multipath

Routing (ECMP) that randomly maps traffic flows onto shortest paths. We measured

the time needed to construct the stochastic matrix representation of the program on a

single machine using two backends (native and PRISM) and under two failure models

(no failures and independent failures with probability 1/1000).

Figure 4.6 depicts the results, several of which are worth discussing. First, the native

backend scales quite well: in the absence of failures (f = 0), it scales to a network with

5000 switches in approximately 10 minutes. This result shows that McNetKAT is able to

handle networks of realistic size. Second, the native backend consistently outperforms

the PRISM backend. We conjecture that the native backend is able to exploit algebraic

properties of the ProbNetKAT program to better parallelize the job. Third, performance

degrades in the presence of failures. This is to be expected—failures lead to more

complex probability distributions which are nontrivial to represent and manipulate.

Parallel speedup. One of the contributors to McNetKAT’s good performance is its

ability to parallelize the computation of stochastic matrices across multiple cores in a

machine, or even across machines in a cluster. Intuitively, because a network is a large

collection of mostly independent devices, it is possible to model its global behavior by

first modeling the behavior of each device in isolation, and then combining the results to

obtain a network-wide model. In addition to speeding up the computation, this approach

can also reduce memory usage, often a bottleneck on large inputs.

To facilitate parallelization, we added an n-ary disjoint branching construct to

131



ProbNetKAT:

case sw=1 then p1 else

case sw=2 then p2 else

. . .

case sw=n then pn

Semantically, this construct is equivalent to a cascade of conditionals; but the native

backend compiles it in parallel using a map-reduce-style strategy, using one process per

core by default.

To evaluate the impact of parallelization, we compiled two representative FatTree

models (p = 14 and p = 16) using ECMP routing on an increasing number of cores. With

m cores, we used one master machine together with r = ⌈m/16− 1⌉ remote machines,

adding machines one by one as needed to obtain more physical cores. The results are

shown in Figure 4.7. We see near linear speedup on a single machine, cutting execution

time by more than an order of magnitude on our 16-core test machine. Beyond a single

machine, the speedup depends on the complexity of the submodels for each switch—the

longer it takes to generate the matrix for each switch, the higher the speedup. For

example, with a p = 16 FatTree, we obtained a 30x speedup using 40 cores across 3

machines.

Comparison with other tools. Bayonet [49] is a state-of-the-art tool for analyzing

probabilistic networks. Whereas McNetKAT has a native backend tailored to the network-

ing domain and a backend based on a probabilistic model checker, Bayonet programs

are translated to a general-purpose probabilistic language which is then analyzed by

the symbolic inference engine PSI [50]. Bayonet’s approach is more general, as it can

model queues, state, and multi-packet interactions under an asynchronous scheduling

model. It also supports Bayesian inference and parameter synthesis. Moreover, Bayonet

132



0 20 40 60 80 100
Number of cores

0

10

20

30

40

50

60

Sp
ee

du
p

FatTree p = 14
FatTree p = 16

Figure 4.7: Speedup due to parallelization.

H1 S0

S1

S2

S3 S4k

S4k+1

S4k+2

S4k+3 H2

pfail pfail

Figure 4.8: Chain topology

is fully symbolic whereas McNetKAT uses a numerical linear algebra solver [30] (based

on floating point arithmetic) to compute limits.

To evaluate how the performance of these approaches compares, we reproduced

an experiment from the Bayonet paper that analyzes the reliability of a simple routing

scheme in a family of “chain” topologies indexed by k, as shown in Figure 4.8.

For k = 1, the network consists of four switches organized into a diamond, with a

single link that fails with probability pfail = 1/1000. For k > 1, the network consists of k

diamonds linked together into a chain as shown in Figure 4.8. Within each diamond,

switch S0 forwards packets with equal probability to switches S1 and S2, which in

133



100 101 102 103 104 105

Number of switches

100

101

102

103
Ti

m
e 

(s
ec

on
ds

) Time limit = 3600s

Bayonet
Prism (approx)
PPNK (approx)

Prism (exact)
PPNK (exact)

PNK
PNK (cluster)

Figure 4.9: Scalability on chain topology.

turn forward to switch S3. However, S2 drops the packet if the link to S3 fails. We

analyze the probability that a packet originating at H1 is successfully delivered to H2. Our

implementation does not exploit the regularity of these topologies.

Figure 4.9 gives the running time for several tools on this benchmark: Bayonet,

hand-written PRISM, ProbNetKAT with the PRISM backend (PPNK), and ProbNetKAT

with the native backend (PNK). Further, we ran the PRISM tools in exact and approximate

mode, and we ran the ProbNetKAT backend on a single machine and on the cluster. Note

that both axes in the plot are log-scaled.

We see that Bayonet scales to 32 switches in about 25 minutes, before hitting the

one hour time limit and 64 GB memory limit at 48 switches. ProbNetKAT answers the

same query for 2048 switches in under 10 seconds and scales to over 65000 switches in

about 50 minutes on a single core, or just 2.5 minutes using a cluster of 24 machines.

PRISM scales similarly to ProbNetKAT, and performs best using the hand-written model

134



in approximate mode.

Overall, this experiment shows that for basic network verification tasks, ProbNetKAT’s

domain-specific backend based on specialized data structures and an optimized linear-

algebra library [30] can outperform an approach based on a general-purpose solver.

4.7 Case Study: Data Center Fault-Tolerance

In this section, we go beyond benchmarks and present a case study that illustrates the

utility of McNetKAT for probabilistic reasoning. Specifically, we model the F10 [106]

data center design in ProbNetKAT and verify its key properties.

Data center resilience. An influential measurement study by Gill et al. [51] showed

that data centers experience frequent failures, which have a major impact on application

performance. To address this challenge, a number of data center designs have been

proposed that aim to simultaneously achieve high throughput, low latency, and fault

tolerance.

F10 topology. F10 uses a novel topology called an AB FatTree, see Figure 4.10(a), that

enhances a traditional FatTree [3] with additional backup paths that can be used when

failures occur. To illustrate, consider routing from s7 to s1 in Figure 4.10(a) along one of

the shortest paths (in thick black). After reaching the core switch C in a standard FatTree

(recall Figure 4.5), if the aggregation switch on the downward path failed, we would

need to take a 5-hop detour (shown in red) that goes down to a different edge switch,

up to a different core switch, and finally down to s1. In contrast, an AB FatTree [106]

modifies the wiring of the aggregation later to provide shorter detours—e.g., a 3-hop

detour (shown in blue) for the previous scenario.

135



s1 s2

A

s3 s4

A′

s5 s6

A′′

s7 s8

C

✗

(a) AB FatTree topology with p = 4.

k
M̂(F100, fk)

≡
teleport

M̂(F103, fk)
≡

teleport

M̂(F103,5, fk)
≡

teleport

0 ✓ ✓ ✓

1 ✗ ✓ ✓

2 ✗ ✓ ✓

3 ✗ ✗ ✓

4 ✗ ✗ ✗

∞ ✗ ✗ ✗

(b) Evaluating k-resilience.

k
compare

F100

F103

compare

F103

F103,5

compare

F103,5

teleport

0 ≡ ≡ ≡
1 < ≡ ≡
2 < ≡ ≡
3 < < ≡
4 < < <
∞ < < <

(c) Comparing schemes under k failures.

Figure 4.10: Resilience of different schemes on AB FatTree topology.

F10 routing. F10’s routing scheme uses three strategies to re-route packets after a

failure occurs. If a link on the current path fails and an equal-cost path exists, the switch

simply re-routes along that path. This approach is also known as equal-cost multi-path

routing (ECMP). If no shortest path exist, it uses a 3-hop detour if one is available, and

otherwise falls back to a 5-hop detour if necessary.

We implemented this routing scheme in ProbNetKAT in several steps. The first, F100,

approximates the hashing behavior of ECMP by randomly selecting a port along one of

the shortest paths to the destination. The second, F103, improves the resilience of F100

by augmenting it with 3-hop re-routing—e.g., consider the blue path in Figure 4.10(a).

136



We find a port on C that connects to a different aggregation switch A′ and forward the

packet to A′. If there are multiple such ports which have not failed, we choose one

uniformly at random. The third, F103,5, attempts 5-hop re-routing in cases where F103

is unable to find a port on C whose adjacent link is up—e.g., consider the red path in

Figure 4.10(a). The 5-hop rerouting strategy requires a flag to distinguish packets taking

a detour from regular packets.

F10 network and failure model. We model the network as discussed in Section 4.2,

focusing on packets destined to switch 1:

M(p) := in · do (p · t) while (¬sw=1)

McNetKAT automatically generates the topology program t from a Graphviz description.

The ingress predicate in is a disjunction of switch-port tests over all ingress locations.

Adding the failure model and some setup code to declare local variables tracking the

health of individual links yields the complete network model:

M̂(p, f) := var up1�1 in . . . var upd�1 in M(f · p)

Here, d is the maximum degree of a topology node. The entire model measures about

750 lines of ProbNetKAT code.

To evaluate the effect of different kinds of failures, we define a family of failure

models fk indexed by the maximum number of failures k ∈ N ∪ {∞} that may occur,

where links fail otherwise independently with probability pr ; we leave pr implicit. To

simplify the analysis, we focus on failures occurring on downward paths (note that

F100 is able to route around failures on the upward path, unless the topology becomes

disconnected).

Verifying refinement. Having implemented F10 as a series of three refinements, we

would expect the probability of packet delivery to increase in each refinement, but not to

137



achieve perfect delivery in an unbounded failure model f∞. Formally, we should have

drop < M̂(F100, f∞) < M̂(F103, f∞)

< M̂(F103,5, f∞) < teleport

where teleport moves the packet directly to its destination, and p < q means the proba-

bility assigned to every input-output pair by q is greater than the probability assigned by

p. We confirmed that these inequalities hold using McNetKAT.

Verifying k-resilience. Resilience is the key property satisfied by F10. By using

McNetKAT, we were able to automatically verify that F10 is resilient to up to three

failures in the AB FatTree Figure 4.10(a). To establish this property, we increased the

parameter k in our failure model fk while checking equivalence with teleportation (i.e.,

perfect delivery), as shown in Figure 4.10(b). The simplest scheme F100 drops packets

when a failure occurs on the downward path, so it is 0-resilient. The F103 scheme routes

around failures when a suitable aggregation switch is available, hence it is 2-resilient.

Finally, the F103,5 scheme routes around failures as long as any aggregation switch is

reachable, hence it is 3-resilient. If the schemes are not equivalent to teleport , we can

still compare the relative resilience of the schemes using the refinement order, as shown

in Figure 4.10(c). Our implementation also enables precise, quantitative comparisons.

For example, Figure 4.11(a) considers a failure model in which an unbounded number

of failures can occur. We find that F100’s delivery probability dips significantly as the

failure probability increases, while both F103 and F103,5 continue to ensure high delivery

probability by routing around failures.

Analyzing path stretch. Routing schemes based on detours achieve a higher degree of

resilience at the cost of increasing the lengths of forwarding paths. We can quantify this

increase by augmenting our model with a counter that is incremented at each hop and

138



1/128 1/64 1/32 1/16 1/8 1/4
Link failure probability

0.80

0.85

0.90

0.95

1.00
Pr

[d
el

iv
er

y]

AB FatTree, F100
AB FatTree, F103
AB FatTree, F103, 5
FatTree, F103, 5

(a) Probability of delivery vs. link-failure
probability.

2 4 6 8 10 12 14
Hop count

0.6

0.7

0.8

0.9

1.0

Pr
[h

op
 c

ou
nt

 ≤
x]

AB FatTree, F100
AB FatTree, F103
AB FatTree, F103, 5
FatTree, F103, 5

(b) Increased path length due to resilience
(pr = 1/4).

1/128 1/64 1/32 1/16 1/8 1/4
Link failure probability

3.6

3.8

4.0

4.2

4.4

4.6

4.8

E[
ho

p 
co

un
t |

 d
el

iv
er

ed
] AB FatTree, F100

AB FatTree, F103
AB FatTree, F103, 5
FatTree, F103, 5

(c) Expected of hop-count for delivered packets.

Figure 4.11: Case study results for unbounded number of failures (k =∞).

analyzing the expected path length. Figure 4.11(b) shows the cumulative distribution

function of latency as the fraction of traffic delivered within a given hop count. On AB

FatTree, F100 delivers ≈80% of the traffic in 4 hops, since the maximum length of a

shortest path from any edge switch to s1 is 4 and F100 does not attempt to recover from

failures. F103 and F103,5 deliver the same amount of traffic when limited to at most 4

hops, but they can deliver significantly more traffic using 2 additional hops by using

139



3-hop and 5-hop paths to route around failures. F103 also delivers more traffic with 8

hops—these are the cases when F103 performs 3-hop re-routing twice for a single packet

as it encountered failure twice. We can also show that on a standard FatTree, F103,5

failures have a higher impact on latency. Intuitively, the topology does not support 3-hop

re-routing. This finding supports a key claim of F10: the topology and routing scheme

should be co-designed to avoid excessive path stretch. Finally, Figure 4.11(c) shows the

expected path length conditioned on delivery. As the failure probability increases, the

probability of delivery for packets routed via the core layer decreases for F100. Thus, the

distribution of delivered packets shifts towards 2-hop paths via an aggregation switch, so

the expected hop-count decreases.

4.8 Related Work

The most closely related system to McNetKAT is Bayonet [49]. In contrast to the

domain-specific approach followed in this chapter, Bayonet uses a general-purpose

probabilistic programming language and inference tool [50]. Such an approach, which

reuses existing techniques, is naturally appealing. In addition, Bayonet is more expressive

than McNetKAT: it supports asynchronous scheduling, stateful transformations, and

probabilistic inference, making it possible to model richer phenomena, such as congestion

due to packet-level interactions in queues. Of course, the extra generality does not come

for free. Bayonet requires programmers to supply an upper bound on loops as the

implementation is not guaranteed to find a fixed point. As discussed in Section 4.5,

McNetKAT scales better than Bayonet on simple benchmarks. Another issue is that

writing a realistic scheduler appears challenging, and one might also need to model

host-level congestion control protocols to obtain accurate results. Currently Bayonet

programs use deterministic or uniform schedulers and model only a few packets at a

time [48].

140



Prior work on ProbNetKAT (Chapter 3) gave a measure-theoretic semantics and an

implementation that approximated programs using sequences of monotonically improv-

ing estimates. While these estimates were proven to converge in the limit, (Chapter 3) of-

fered no guarantees about the convergence rate. In fact, there are examples where the

approximations do not converge after any finite number of steps, which is obviously

undesirable in a tool. The implementation only scaled to 10s of switches. In contrast,

this chapter presents a straightforward and implementable semantics; the implemen-

tation computes limits precisely in closed form, and it scales to real-world networks

with thousands of switches. McNetKAT achieves this by restricting to the guarded and

history-free fragment of ProbNetKAT, sacrificing the ability to reason about multicast and

path-properties directly. In practice this sacrifice seems well worth the payoff: multicast

is somewhat uncommon, and we can often reason about path-properties by maintaining

extra state in the packets. In particular, McNetKAT can still model the examples studied

in Chapter 3.

Our work is the latest in a long line of techniques using Markov chains as a tool

for representing and analyzing probabilistic programs. For an early example, see the

seminal paper of Sharir et al. [159]. Markov chains are also used in many probabilistic

model checkers, such as PRISM [100].

Beyond networking applications, there are connections to other work on verification

of probabilistic programs. Di Pierro, Hankin, and Wiklicky used probabilistic abstract

interpretation to statically analyze probabilistic λ-calculus [31]; their work was extended

to a language pWhile, using a store and program location state space similar to Sharir

et al. [159]. However, they do not deal with infinite limiting behavior beyond stepwise it-

eration, and do not guarantee convergence. Olejnik, Wicklicky, and Cheraghchi provided

a probabilistic compiler pwc for a variation of pWhile [126]; their optimizations could

potentially be useful for McNetKAT. A recent survey by Gordon et al. [54] shows how to

141



give semantics for probabilistic processes using stationary distributions of Markov chains,

and studies convergence. Similar to our approach, they use absorbing strongly connected

components to represent termination. Finally, probabilistic abstract interpretation is

also an active area of research [175]; it would be interesting to explore applications to

ProbNetKAT.

4.9 Conclusion

This chapter presents a scalable tool for verifying probabilistic networks based on a new

semantics for the history-free fragment of ProbNetKAT in terms of Markov chains. Natural

directions for future work include further optimization of our implementation—e.g.,

using Bayesian networks to represent joint distributions compactly. We are also interested

in applying McNetKAT to other systems that implement algorithms for randomized

routing [99, 163], load balancing [33], traffic monitoring [158], anonymity [32], and

network neutrality [179], among others.

142



Part III

A Family of Programming Languages

143





Chapter 5

Guarded Kleene Algebra with Tests

“We must think in terms, not of languages, but of families of languages.”

—Peter J. Landin

“Mechanical reasoning is used in program manipulation to verify routine facts

or to catch slippery errors, not to prove mathematically interesting theorems.”

—Greg Nelson and Derek C. Oppen

Guarded Kleene Algebra with Tests (GKAT) is a variation on Kleene Algebra with Tests

(KAT) that arises by restricting the union (+) and iteration (∗) operations from KAT to

predicate-guarded versions. We develop the (co)algebraic theory of GKAT and show how

it can be efficiently used to reason about imperative programs. In contrast to KAT, whose

equational theory is PSPACE-complete, we show that the equational theory of GKAT is

(almost) linear time. We also provide a full Kleene theorem and prove completeness for

an analogue of Salomaa’s axiomatization of Kleene Algebra.

5.1 Introduction

Computer scientists have long explored the connections between families of programming

languages and abstract machines. This dual perspective has furnished deep theoretical

insights as well as practical tools. As an example, Kleene’s classic result establishing

145



the equivalence of regular expressions and finite automata [81] inspired decades of

work across a variety of areas including programming language design, mathematical

semantics, and formal verification.

Kleene Algebra with Tests (KAT) [89], which combines Kleene Algebra (KA) with

Boolean Algebra (BA), is a modern example of this approach. Viewed from the program-

centric perspective, a KAT models the fundamental constructs that arise in programs:

sequencing, branching, iteration, non-determinism, etc. The equational theory of KAT

enables algebraic reasoning and can be finitely axiomatized [96]. Viewed from the

machine-centric perspective, a KAT describes a kind of automaton that generates a

regular language of traces. This shift in perspective admits techniques from the theory

of coalgebras for reasoning about program behavior. In particular, there are efficient

algorithms for checking bisimulation, which can be optimized using properties of bisimu-

lations [18, 65] or symbolic automata representations [138].

KAT has been used to model computation across a wide variety of areas including

program transformations [7, 91], concurrency control [25], compiler optimizations [95],

cache control [12, 24], and more [24]. A prominent recent application is NetKAT [6],

a language for reasoning about the packet-forwarding behavior of software-defined

networks. NetKAT has a sound and complete equational theory, and a coalgebraic

decision procedure that can be used to automatically verify many important networking

properties including reachability, loop-freedom, and isolation [45]. However, while

NetKAT’s implementation scales well in practice, the complexity of deciding equivalence

for NetKAT is PSPACE-complete in the worst case [6].

A natural question to ask is whether there is an efficient fragment of KAT that is

reasonably expressive, while retaining a solid foundation. We answer this question

positively in this paper with a comprehensive study of Guarded Kleene Algebra with Tests

(GKAT), the guarded fragment of KAT. The language is a propositional abstraction of

146



imperative while programs, which have been well-studied in the literature. We establish

the fundamental properties of GKAT and develop its algebraic and coalgebraic theory.

GKAT replaces the union (e + f) and iteration (e∗) constructs in KAT with guarded

versions: conditionals (e +b f) and loops (e(b)) guarded by Boolean predicates b. The

resulting language is a restriction of full KAT, but it is sufficiently expressive to model

typical, imperative programs—e.g., essentially all NetKAT programs needed to solve

practical verification problems can be expressed as guarded programs.

In exchange for a modest sacrifice in expressiveness, GKAT offers two significant

advantages. First, equivalence is decidable in nearly linear time—a substantial improve-

ment over the PSPACE complexity for KAT [26]. Specifically, any GKAT expression e can

be represented as a deterministic automaton of size O(|e|), while KAT expressions can

require as many as O(2|e|) states. As a consequence, any property that is efficiently decid-

able for deterministic automata is also efficiently decidable for GKAT. Second, we believe

that GKAT is a better foundation for probabilistic languages due to well-known issues

that arise when combining non-determinism—which is native to KAT—with probabilistic

choice [114, 173]. For example, ProbNetKAT [44], a probabilistic extension of NetKAT,

does not satisfy the KAT axioms, but its guarded restriction forms a proper GKAT.

Although GKAT is a simple restriction of KAT at the syntactic level, the semantics of

the language is surprisingly subtle. In particular, the “obvious” notion of GKAT automata

can encode behaviors that would require non-local control-flow operators (e.g, goto or

multi-level break statements) [98]. In contrast, GKAT models programs whose control-

flow always follows a lexical, nested structure. To overcome this discrepancy, we identify

a set of restrictions on automata to enable an analogue of Kleene’s theorem—every

GKAT automaton satisfying our restrictions can be converted to a program, and vice

versa. Besides the theoretical interest in this result, we believe it may also have practical

applications, such as reasoning about optimizations in a compiler for an imperative

147



language [63]. We also develop an equational axiomatization for GKAT and prove that

it is sound and complete over a coequationally-defined language model. The main

challenge is that without +, the natural order ≤ on KAT programs can no longer be used

to for axiomatize a least fixpoint. We instead axiomatize a unique fixed point, in the

style of Salomaa’s work on Kleene Algebra [152].

Outline. We make the following contributions in this paper.

• We initiate a comprehensive study of GKAT, a guarded version of KAT, and show how

GKAT models relational and probabilistic programming languages (Section 5.2).

• We give a new construction of linear-size automata from GKAT programs (Sec-

tion 5.4). As a consequence, the equational theory of GKAT is decidable in nearly

linear time (Section 5.5).

• We identify a class of automata representable as GKAT expressions (Section 5.4)

that contains all automata produced by the previous construction, yielding a Kleene

theorem.

• We present axioms for GKAT (Section 5.3) and prove that our axiomatization is

complete for equivalence with respect to a coequationally-defined language model

(Section 5.6).

Omitted proofs can be found in the appendix.

5.2 Overview: An Abstract Programming Language

This section introduces the syntax and semantics of GKAT, an abstract programming

language with uninterpreted actions. Using examples, we show how GKAT can model

relational and probabilistic programming languages—i.e., by giving actions a concrete

interpretation. An equivalence between abstract GKAT programs thus implies a corre-

sponding equivalence between concrete programs.

148



5.2.1 Syntax

The syntax of GKAT is parameterized by abstract sets of actions Σ and primitive tests T ,

where Σ and T are assumed to be disjoint and nonempty, and T is assumed to be finite.

We reserve p and q to range over actions. The language consists of Boolean expressions,

BExp, and GKAT expressions, Exp, as defined by the following grammar:

b, c, d ∈ BExp ::=

| 0 false

| 1 true

| t ∈ T t

| b · c b and c

| b+ c b or c

| b not b

e, f, g ∈ Exp ::=

| p ∈ Σ do p

| b ∈ BExp assert b

| e · f e; f

| e+b f if b then e else f

| e(b) while b do e

The algebraic notation on the left is more convenient when manipulating terms, while the

notation on the right may be more intuitive when writing programs. We often abbreviate

e · f by ef , and omit parentheses following standard conventions, e.g., writing bc + d

instead of (bc) + d and ef (b) instead of e(f (b)).

5.2.2 Semantics: Language Model

Intuitively, we interpret a GKAT expression as the set of “legal” execution traces it induces,

where a trace is legal if no assertion fails. To make this formal, let b ≡BA c denote Boolean

equivalence. Entailment is a preorder on the set of Boolean expressions, BExp, and can be

characterized in terms of equivalence as follows: b ≤ c ⇐⇒ b+ c ≡BA c. In the quotient

set BExp/ ≡BA (the free Boolean algebra on generators T = {t1, . . . , tn}), entailment is a

partial order [b]≡BA
≤ [c]≡BA

⇐⇒ b + c ≡BA c, with minimum and maximum elements

given by the equivalence classes of 0 and 1, respectively. The minimal nonzero elements

of this order are called atoms. We let At denote the set of atoms and use lowercase

149



Greek letters α, β, . . . to denote individual atoms. Each atom is the equivalence class

of an expression of the form c1 · c2 · · · cn ∈ BExp with ci ∈ {ti, ti}. Thus we can think

of each atom as representing a truth assignment on T , e.g., if ci = ti then ti is set to

true, otherwise if ci = ti then ti is set to false. Likewise, the set {α ∈ At | α ≤ b} can be

thought of as the set of truth assignments where b evaluates to true; ≡BA is complete w.r.t.

this interpretation in that two Boolean expressions are related by ≡BA if and only if their

atoms coincide [16].

A guarded string is an element of the regular set GS := At·(Σ · At)∗. Intuitively, a non-

empty string α0p1α1 · · · pnαn ∈ GS describes a trace of an abstract program: the atoms αi

describe the state of the system at various points in time, starting from an initial state

α0 and ending in a final state αn, while the actions pi ∈ Σ are the triggering transitions

between the various states. Given two traces, we can combine them sequentially by

running one after the other. Formally, guarded strings compose via a partial fusion

product ⋄ : GS× GS ⇀ GS, defined for x, y ∈ (At ∪ Σ)∗ as

xα ⋄ βy :=

xαy if α = β

undefined otherwise.

This product lifts to a total function on languages L,K ⊆ GS of guarded strings, given by

L ⋄K := {x ⋄ y | x ∈ L, y ∈ K}.

We need a few more constructions before we can interpret GKAT expressions as languages

representing their possible traces. First, 2GS with the fusion product forms a monoid with

identity At and so we can define the n-th power Ln of a language L inductively in the

usual way:

L0 := At Ln+1 := Ln ⋄ L

Second, in the special case where B ⊆ At, we write B for At−B and define:

L+B K := (B ⋄ L) ∪ (B ⋄K) L(B) :=
⋃
n≥0

(B ⋄ L)n ⋄B

150



We are now ready to interpret GKAT expressions as languages of guarded strings via

the semantic map J−K : Exp→ 2GS as follows:

JpK := {αpβ | α, β ∈ At}

JbK := {α ∈ At | α ≤ b}

Je · fK := JeK ⋄ JfK

Je+b fK := JeK +JbK JfK

Je(b)K := JeK(JbK)

We call this the language model of GKAT. Since we make no assumptions about the

semantics of actions, we interpret them as sets of traces beginning and ending in

arbitrary states; this soundly overapproximates the behavior of any instantiation. A test

is interpreted as the set of states satisfying the test. The traces of e · f are obtained by

composing traces from e with traces from f in all possible ways that make the final state

of an e-trace match up with the initial state of an f -trace. The traces of e +b f collect

traces of e and f , restricting to e-traces whose initial state satisfies b and f -traces whose

initial state satisfies b. The traces of e(b) are obtained by sequentially composing zero or

more be-traces and selecting only traces ending in a state satisfying b.

Remark 5.2.1 (Connection to KAT). The expressions for KAT, denoted KExp, are gener-

ated by the same grammar as for GKAT, except that KAT’s union (+) replaces GKAT’s

guarded union (+b) and KAT’s iteration (e∗) replaces GKAT’s guarded iteration (e(b)).

GKAT’s guarded operators can be encoded in KAT; this encoding, which goes back to early

work on Propositional Dynamic Logic [41], is the standard method to model conditionals

and while loops:

e+b f = be+ bf e(b) = (be)∗b

In other words, there is a homomorphic map φ : Exp→ KExp from GKAT to KAT expres-

sions. We inherit KAT’s language model [96], KJ−K : KExp→ 2GS, in the following sense:

J−K = KJ−K ◦ φ.

Definition 5.2.2 (Deterministic languages). The languages denoted by GKAT programs

satisfy a determinacy property: whenever x, y are in the language and x and y agree on

151



their first n atoms, then they agree on their first n actions (or lack thereof). For example,

{αpγ, βqδ} and {αpγ, β} for α ̸= β satisfy the determinacy property, while {αpβ, α} and

{αpβ, αqδ} for p ̸= q do not.

We say that two expressions e and f are equivalent if they have the same semantics—i.e.,

if JeK = JfK. In the following sections, we show that this notion of equivalence

• is sound and complete for relational and probabilistic interpretations (Section 5.2.3

and Section 5.2.4),

• can be finitely and equationally axiomatized in a sound (Section 5.3) and complete

(Section 5.6) way, and

• is efficiently decidable in time nearly linear in the sizes of the expressions (Sec-

tion 5.5).

5.2.3 Relational Model

This subsection gives an interpretation of GKAT expressions as binary relations, a common

model of input-output behavior for many programming languages. We show that the

language model is sound and complete for this interpretation. Thus GKAT equivalence

implies program equivalence for any programming language with a suitable relational

semantics.

Definition 5.2.3 (Relational Interpretation). Let i = (State, eval, sat) be a triple consisting

of

• a set of states State,

• for each action p ∈ Σ, a binary relation eval(p) ⊆ State× State, and

• for each primitive test t ∈ T , a set of states sat(t) ⊆ State.

152



Then the relational interpretation of an expression e with respect to i is the smallest

binary relation RiJeK ⊆ State× State satisfying the following rules,

RiJpK = eval(p)

σ ∈ sat†(b)

(σ, σ) ∈ RiJbK

(σ, σ′) ∈ RiJeK (σ′, σ′′) ∈ RiJfK

(σ, σ′′) ∈ RiJe · fK

σ ∈ sat†(b) (σ, σ′) ∈ RiJeK

(σ, σ′) ∈ RiJe+b fK

σ ∈ sat†(b) (σ, σ′) ∈ RiJfK

(σ, σ′) ∈ RiJe+b fK

σ ∈ sat†(b) (σ, σ′) ∈ RiJeK (σ′, σ′′) ∈ RiJe(b)K

(σ, σ′′) ∈ RiJe(b)K

σ ∈ sat†(b)

(σ, σ) ∈ RiJe(b)K

where sat† : BExp → 2State denotes the lifting of sat : T → 2State to Boolean expression

over T in the usual way.

The rules definingRiJeK are reminiscent of the big-step semantics of many imperative

languages; these languages arise as instances of the model for various choices of i. The

following result says that the language model from the previous section abstracts the

various relational interpretations in a sound and complete way. It was first proved in [96]

for Kleene Algebra with Tests (KAT).

Theorem 5.2.4. The language model is sound and complete for the relational model:

JeK = JfK ⇐⇒ ∀i.RiJeK = RiJfK

It is worth noting that Theorem 5.2.4 also holds for refinement (i.e., with ⊆ instead of

=).

Example 5.2.5 (IMP). Consider a simple imperative programming language IMP with

variable assignments and arithmetic and boolean expressions:

arithmetic expressions a ∈ A ::= x ∈ Var | n ∈ Z | a1 + a2 | a1 − a2 | a1 × a2

boolean expressions b ∈ B ::= false | true | a1 < a2 | not b | b1 and b2 | b1 or b2

commands c ∈ C ::= skip | x := a | c1; c2 | if b then c1 else c2 | while b do c

153



IMP can be modeled in GKAT using actions for assignments and primitive tests for

comparisons,1

Σ = {x :− a | x ∈ Var, a ∈ A} T = {a1 < a2 | a1, a2 ∈ A}

and interpreting GKAT expressions over the state space of variable assignments State :−

Var→ Z:

eval(x :− a) := {(σ, σ[x := n]) | σ ∈ State, n = AJaK(σ)}

σ[x := n] := λy.

n if x = y

σ(x) else

sat(a1 < a2) := {σ ∈ State | AJa1K(σ) < AJa2K(σ)},

where AJaK : State→ Z denotes arithmetic evaluation. Sequential composition, condi-

tionals, and while loops in IMP are modeled by their GKAT counterparts; skip is modeled

by 1. Thus, IMP equivalence refines GKAT equivalence (Theorem 5.2.4). For example,

the program transformation

if x < 0 then (x := 0− x;x := 2× x) else (x := 2× x)

⇝ (if x < 0 then x := 0− x else skip);x := 2× x

is sound by the equivalence pq +b q ≡ (p+b 1) · q. We study such equivalences further in

Section 5.3.

5.2.4 Probabilistic Model

In this subsection, we give a third interpretation of GKAT expressions in terms of sub-

Markov kernels, a common model for probabilistic programming languages (PPLs). We

show that the language model is sound and complete for this model as well.
1Technically, we can only reserve a test for a finite subset of comparisons, as T is finite. However, for

reasoning about pairwise equivalences of programs, which only contain a finite number of comparisons,
this restriction is not essential.

154



We briefly review some basic primitives commonly used in the denotational seman-

tics of PPLs. For a countable set2 X, we let D(X) denote the set of subdistributions

over X, i.e., the set of probability assignments f : X → [0, 1] summing up to at most

1—i.e.,
∑

x∈X f(x) ≤ 1. A common distribution is the Dirac distribution or point mass

on x ∈ X, denoted δx ∈ D(X); it is the map y 7→ [y = x] assigning probability 1 to x,

and probability 0 to y ̸= x. (The Iverson bracket [φ] is defined to be 1 if the statement φ

is true, and 0 otherwise.) Denotational models of PPLs typically interpret programs as

Markov kernels, maps of type X → D(X). Such kernels can be composed in sequence

using Kleisli composition, since D(−) is a monad [52].

Definition 5.2.6 (Probabilistic Interpretation). Let i = (State, eval, sat) be a triple con-

sisting of

• a countable set of states State;

• for each action p ∈ Σ, a sub-Markov kernel eval(p) : State→ D(State); and

• for each primitive test t ∈ T , a set of states sat(t) ⊆ State.

Then the probabilistic interpretation of an expression e with respect to i is the sub-Markov

kernel PiJeK : State→ D(State) defined as follows:

PiJpK := eval(p) PiJbK(σ) := [σ ∈ sat†(b)] · δσ

PiJe · fK(σ)(σ′) :=
∑
σ′′

PiJeK(σ)(σ′′) · PiJfK(σ′′)(σ′)

PiJe+b fK(σ) := [σ ∈ sat†(b)] · PiJeK(σ) + [σ ∈ sat†(b)] · PiJfK(σ)

PiJe(b)K(σ)(σ′) := lim
n→∞

PiJ(e+b 1)
n · bK(σ)(σ′)

See Lemma C.1.1 for a proof that the limit exists, and that PiJeK is a sub-Markov kernel

for all e.

2We restrict to countable states spaces (and thus, discrete distributions) for ease of presentation, but
this section be generalized to uncountable state spaces and continuous distributions.

155



Theorem 5.2.7. The language model is sound and complete for the probabilistic model:

JeK = JfK ⇐⇒ ∀i.PiJeK = PiJfK

Proof Sketch. By mutual implication.

⇒: For soundness, we define a map κi : GS→ State→ D(State) that interprets guarded

strings as sub-Markov kernels as follows:

κi(α)(σ) := [σ ∈ sat†(α)] · δσ

κi(αpw)(σ)(σ
′) := [σ ∈ sat†(α)] ·

∑
σ′′

eval(p)(σ)(σ′′) · κi(w)(σ
′′)(σ)

We then lift κi to languages via pointwise summation, κi(L) :=
∑

w∈L κi(w), and

establish that any probabilistic interpretation factors through the language model

via κi: PiJ−K = κi ◦ J−K.

⇐: For completeness, we construct an interpretation i := (GS, eval, sat) over GS as

follows,

eval(p)(w) := Unif({wpα | α ∈ At}) sat(t) := {xα ∈ GS | α ≤ t}

and show that JeK is fully determined by PiJeK:

JeK = {αx ∈ GS | PiJeK(α)(αx) ̸= 0}.

As for Theorem 5.2.4, Theorem 5.2.7 can also be shown for refinement (i.e., with ⊆ and

≤ instead of =).

Example 5.2.8 (Probabilistic IMP). We can extend IMP from Example 5.2.5 with a

probabilistic assignment command x ∼ µ, where µ ranges over sub-distributions on Z, as

follows:

c ::= . . . | x ∼ µ Σ = . . . ∪ {x ∼ µ | x ∈ Var, µ ∈ D(Z)}

156



The interpretation i = (Var→ Z, eval, sat) over the state space of variable assignments is

as before, except we now restrict to a finite set of variables to guarantee that the state

space is countable, and we interpret actions as sub-Markov kernels as follows:

eval(x := n)(σ) := δσ[x:=n] eval(x ∼ µ)(σ) :=
∑
n∈Z

µ(n) · δσ[x:=n]

5.3 Axiomatization

In most programming languages, the same behavior can be realized using different pro-

grams. For example, we expect the programs if b then e else f and if (not b) then f else e

to encode the same behavior. Likewise, different expressions in GKAT can denote the

same language of guarded strings. For instance, the previous example is reflected in

GKAT by the fact that the language semantics of e+b f and f +b e coincide. This raises

the questions: what other equivalences hold between GKAT expressions? And, can all

equivalences be captured by a finite number of equations? In this section, we give some

initial answers to these questions, by proposing a set of axioms for GKAT and showing

that they can be used to prove a large class of equivalences.

5.3.1 Some Simple Axioms

As an initial answer to the first question, we propose the following.

Definition 5.3.1. We define ≡ as the smallest congruence (w.r.t. all operators) on Exp

that satisfies the axioms given in Figure 5.1 (for all e, f, g ∈ Exp and b, c, d ∈ BExp) and

subsumes Boolean equivalence in the sense that b ≡BA c implies b ≡ c.

The guarded union axioms (U1-U5) can be understood intuitively by thinking in

terms of if-then-else; for instance, we have the law e+b f ≡ f +b e discussed before, but

also eg +b fg ≡ (e+b f) · g, which says that if both branches of a guarded union end by

157



Guarded Union Axioms Sequence Axioms (inherited from KA)
U1. e+b e ≡ e (idempotence) S1. (e · f) · g ≡ e · (f · g) (associativity)
U2. e+b f ≡ f +b e (skew commut.) S2. 0 · e ≡ 0 (absorbing left)
U3. (e+b f) +c g ≡ e+bc (f +c g) (skew assoc.) S3. e · 0 ≡ 0 (absorbing right)
U4. e+b f ≡ be+b f (guardedness) S4. 1 · e ≡ e (neutral left)
U5. eg +b fg ≡ (e+b f) · g (right distrib.) S5. e · 1 ≡ e (neutral right)

Guarded Loop Axioms
W1. e(b) ≡ ee(b) +b 1 (unrolling)

W3.
g ≡ eg +b f

g ≡ e(b)f
if E(e) ≡ 0 (fixpoint)

W2. (e+c 1)
(b) ≡ (ce)(b) (tightening)

Figure 5.1: Axioms for GKAT-expressions.

executing g, then g can be “factored out.” Equivalences for sequential composition are

also intuitive; for instance, e · 0 ≡ 0 encodes that if a program will fail eventually by

reaching the statement 0, then the whole program fails.

The axioms for loops (W1–3) are more subtle. The axiom e(b) ≡ ee(b) +b 1 (W1) says

that we can think of a guarded loop as equivalent to its unrolling—i.e., the program

while b do e has the same behavior as the program if b then (e; while b do e) else skip. The

axiom (e+c 1)
(c) ≡ (ce)(b) (W2) states that iterations of a loop that do not have any effect

(i.e., an execution equivalent to skip) can be omitted; we refer to this transformation as

loop tightening.

To explain the fixpoint axiom (W3), disregard the side-condition for a moment. In

a sense, this rule states that if g tests (using b) whether to execute e and loop again or

execute f (i.e., if g ≡ eg +b f) then g is a b-guarded loop followed by f (i.e., g ≡ e(b)f).

However, such a rule is not sound in general. For instance, suppose e, f, g, b = 1; in that

case, 1 ≡ 1 · 1 +1 1 can be proved using the other axioms, but applying the rule would

allow us to conclude that 1 ≡ 1(1) ·1, even though J1K = At and J1(1) ·1K = ∅! The problem

here is that, while g is tail-recursive as required by the premise, this self-similarity is

trivial because e does not represent a productive program. We thus need to restrict the

application of the inference rule to cases where the loop body is strictly productive—i.e.,

where e is guaranteed to execute some action. To this end, we define the function E as

158



follows.

Definition 5.3.2. The function E : Exp→ BExp is defined inductively as follows:

E(b) := b E(e+b f) := b · E(e) + b · E(f) E(e(b)) := b

E(p) := 0 E(e · f) := E(e) · E(f)

Intuitively, E(e) is the weakest test that guarantees that e terminates successfully,

but does not perform any action. For instance, E(p) is 0—the program p is guaranteed to

perform the action p. Using E, we can now restrict the application of the fixpoint rule to

the cases where E(e) ≡ 0, i.e., where e performs an action under any circumstance.

Theorem 5.3.3 (Soundness). The GKAT axioms are sound for the language model:

e ≡ f =⇒ JeK = JfK.

Proof Sketch. By induction on the length of derivation of the congruence ≡. We provide

the full proof in the appendix and show just the proof for the fixpoint rule. Here, we

should argue that if E(e) ≡ 0 and JgK = Jeg +b fK, then also JgK = Je(b)fK. We note

that, using soundness of (W1) and (U5), we can derive that Je(b)fK = J(ee(b) +b 1)fK =

Jee(b)f +b fK.

We reason by induction on the length of guarded strings. In the base case, we know

that α ∈ JgK if and only if α ∈ Jeg +b fK; since E(e) ≡ 0, the latter holds precisely when

α ∈ JfK and α ≤ b, which is equivalent to α ∈ Je(b)fK. For the inductive step, suppose

159



Guarded Union Facts Guarded Iteration Facts

U3’. e+b (f +c g) ≡ (e+b f) +b+c g (skew assoc.) W4. e(b) ≡ e(b) · b (guardedness)
U4’. e+b f ≡ e+b bf (guardedness) W4’. e(b) ≡ (be)(b) (guardedness)
U5’. b · (e+c f) ≡ be+c bf (left distrib.) W5. e(0) ≡ 1 (neutrality)
U6. e+b 0 ≡ be (neutral right) W6. e(1) ≡ 0 (absorption)
U7. e+0 f ≡ f (trivial right) W6’. b(c) ≡ c (absorption)
U8. b · (e+b f) ≡ be (branch sel.) W7. e(c) ≡ e(bc) · e(c) (fusion)

Figure 5.2: Derivable GKAT facts

the claim holds for y; then

αpy ∈ JgK

⇐⇒ αpy ∈ Jeg +b fK

⇐⇒ αpy ∈ JegK ∧ α ≤ b or αpy ∈ JfK ∧ α ≤ b

⇐⇒ ∃y. y1y2 ∧ αpy1 ∈ JeK ∧ y2 ∈ JgK ∧ α ≤ b or αpy ∈ JfK ∧ α ≤ b (E(e) = 0)

⇐⇒ ∃y. y1y2 ∧ αpy1 ∈ JeK ∧ y2 ∈ Je(b)fK ∧ α ≤ b or αpy ∈ JfK ∧ α ≤ b (IH)

⇐⇒ αpy ∈ Jee(b)fK ∧ α ≤ b or αpy ∈ JfK ∧ α ≤ b

⇐⇒ αpy ∈ Jee(b)f +b fK = Je(b)fK

5.3.2 A Fundamental Theorem

The side condition on (W3) is inconvenient when proving facts about loops. However, it

turns out that we can transform any loop into an equivalent, productive loop—i.e., one

with a loop body e such that E(e) ≡ 0. To this end, we need a way of decomposing a

GKAT expression into a guarded sum of an expression that describes termination, and

another (strictly productive) expression that describes the next steps that the program

may undertake. As a matter of fact, we already have a handle on the former term: E(e)

is a Boolean term that captures the atoms for which e may halt immediately. It therefore

remains to describe the next steps of a program.

160



Definition 5.3.4 (Derivatives). Let α ∈ At. We define Dα : Exp→ 2+Σ×Exp inductively

as follows:

Dα(b) =

1 α ≤ b

0 α ̸≤ b
Dα(p) = (p, 1) Dα(e+b f) =

Dα(e) α ≤ b

Dα(f) α ≤ b

Dα(e · f) =


(p, e′ · f) Dα(e) = (p, e′)

0 Dα(e) = 0

Dα(f) Dα(e) = 1

Dα(e
(b)) =


(p, e′ · e(b)) α ≤ b ∧Dα(e) = (p, e′)

0 α ≤ b ∧Dα(e) ∈ 2

1 α ≤ b

We will use a general type of guarded union to sum over an atom-indexed set of

expressions.

Definition 5.3.5. Let Φ ⊆ At, and let {eα}α∈Φ be a set of expressions indexed by Φ. We

write

+
α∈Φ

eα =


eβ +β

(
+

α∈Φ\{β}
eα

)
β ∈ Φ

0 Φ = ∅

Like other operators on indexed sets, we may abuse notation and replace Φ by a predicate

over some atom α, with eα a function of α; for instance, we could write +α≤1 α ≡ 1.

Remark 5.3.6. The definition above is ambiguous in the choice of β. However, that does

not change the meaning of the expression, as far as ≡ is concerned. For the details, see

Appendix C.2.

We are now ready to state the desired decomposition of terms; we call this the

fundamental theorem of GKAT, after [149, 162]. The proof is included in the appendix.

161



Theorem 5.3.7 (Fundamental Theorem). For all GKAT programs e, the following equality

holds:

e ≡ 1 +E(e) D(e), where D(e) := +
α : Dα(e)=(pα,eα)

pα · eα. (5.1)

The following observations about D and E are also useful; the proof is deferred to the

appendix.

Lemma 5.3.8. Let e be an expression. Then its components E(e) and D(e) satisfy the

following identities:

E(D(e)) ≡ 0 E(e) ·D(e) ≡ D(e) E(e) · e ≡ D(e)

Using the fundamental theorem and the above, we can now show how to syntacti-

cally transform any loop into an equivalent loop whose body e is strictly productive.

Lemma 5.3.9 (Productive Loop). Let e ∈ Exp and b ∈ BExp. We have e(b) ≡ D(e)(b).

Proof. Using Lemma 5.3.8, we derive as follows:

e(b)
FT≡ (1 +E(e) D(e))(b)

U2≡ (D(e) +E(e) 1)
(b) W2≡ (E(e)D(e))

(b)
≡ D(e)(b)

5.3.3 Derivable Facts

The GKAT axioms can be used to derive other natural equivalences of programs, such as

the ones in Figure 5.2. For instance, e(b) ≡ e(b)b, labelled (W4), says that b must be false

when e(b) ends.

Lemma 5.3.10. The facts in Figure 5.2 are derivable from the axioms.

Proof Sketch. We show (U6) and (W7); the remaining proofs are included in the ap-

162



pendix.

e+b 0 ≡ be+b 0 (U4. e+b f ≡ be+b f)

≡ 0 +b be (U2. e+b f ≡ f +b e)

≡ bbe+b be (Boolean algebra and S2. 0 ≡ 0e)

≡ be+b be (U4. e+b f ≡ be+b f)

≡ be (U1. e+b e ≡ e)

To prove (W7), we use the productive loop lemma and the fixpoint axiom (W3).

e(c) ≡ e(c) +bc e
(c) (U1. e+b e ≡ e)

≡ (D(e))(c) +bc e
(c) (Productive loop lemma)

≡ D(e)D(e)(c) +bc e
(c) (W2, U4 and Boolean algebra)

≡ D(e)e(c) +bc e
(c) (Productive loop lemma)

≡ D(e)(bc)e(c) (W3)

≡ e(bc)e(c) (Productive loop lemma)

This completes the proof.

We conclude our presentation of derivable facts by showing one more interesting

fact. Unlike the derived facts above, this one is an implication: if the test c is invariant

for the program e given that a test b succeeds, then c is preserved by a b-loop on e.

Lemma 5.3.11 (Invariance). Let e ∈ Exp and b, c ∈ BExp. If cbe ≡ cbec, then ce(b) ≡

(ce)(b)c.

163



Proof. We first derive a useful equivalence, as follows:

cb ·D(e) ≡ cb · E(e) · e (Lemma 5.3.8)

≡ E(e) · cbe (Boolean algebra)

≡ E(e) · cbec (premise)

≡ cb · E(e) · ec (Boolean algebra)

≡ cb ·D(e) · c (Lemma 5.3.8)

Next, we show the main claim by deriving

ce(b) ≡ c ·D(e)(b) (Productive loop lemma)

≡ c · (D(e) ·D(e)(b) +b 1) (W1)

≡ c · (D(e) · e(b) +b 1) (Productive loop lemma)

≡ c · (b ·D(e) · e(b) +b 1) (U2)

≡ cb ·D(e) · e(b) +b c (U5’)

≡ cb ·D(e) · ce(b) +b c (above derivation)

≡ c ·D(e) · ce(b) +b c (U2)

≡ (c ·D(e))(b)c (W3)

≡ D(ce)(b)c (Def. D, Boolean algebra)

≡ (ce)(b)c (Productive loop lemma)

This completes the proof.

5.3.4 A Limited Form of Completeness

Above, we considered a number of axioms that were proven sound with respect to the

language model. Ultimately, we would like to show that in fact these are sufficient to

164



prove all equivalences between programs—i.e., whenever JeK = JfK, it also holds that

e ≡ f .

This general completeness result in Section 5.6 requires some additional machinery.

However, we can already prove a special case of completeness related to Hoare triples.

Suppose e is a GKAT program, and b and c are Boolean expressions encoding pre-

and postconditions. If we would like to state that, assuming b holds initially, every

terminating run of e finishes in a state satisfying c, then this can be encoded in the

language model by saying that JbeK = JbecK, i.e., every finite run of be is a run where c

holds upon termination. The following states that all valid Hoare triples of this kind can

be established axiomatically:

Theorem 5.3.12 (Hoare completeness). Let e ∈ Exp and b, c ∈ BExp. If JbecK = JbeK, then

bec ≡ be.

Proof. By induction on e. In the base, there are two cases to consider.

• If e = d for some Boolean d, then the claim follows by completeness of the Boolean

algebra axioms, which ≡ subsumes by definition.

• If e = a ∈ Σ, then JbecK = JbeK implies JcK = J1K, hence c ≡ 1 by completeness of

Boolean algebra; the claim then follows.

For the inductive step, there are three cases:

• If e = e0+d e1, then JbecK = JbeK implies that Jdbe0cK = Jdbe0K and Jdbe1cK = Jdbe1K.

By induction, we then know that dbe0c ≡ dbe0 and dbe1c ≡ dbe1. We can then

165



derive as follows:

b(e0 +d e1)c ≡ be0c+d be1c (U5’)

≡ dbe0c+d dbe1c (U4, U4’)

≡ dbe0c+d dbe1 (dbe1c ≡ dbe1)

≡ dbe0 +d dbe1 (dbe0c ≡ dbe0)

≡ be0 +d be1 (U4, U4’)

≡ b · (e0 +d e1) (U5’)

• If e = e0 · e1, then let d =
∑
{α ∈ At : Jbe0αK ̸= ∅}. We then know that

Jbe0dK = Jbe0K, and hence be0d ≡ be0 by induction. We furthermore claim that

Jde1cK = Jde1K. To see this, note that if αwβ ∈ Jde1K, then α ≤ d, and hence there

exists an xα ∈ Jbe0αK ⊆ Jbe0dK = Jbe0K. Thus, we know that xαwβ ∈ Jbe0e1K =

Jbe0e1cK, meaning that β ≤ c; hence, we know that αwβ ∈ Jde1cK. By induction,

de1c ≡ de1. We then derive:

be0e1c ≡ be0de1c (be0 ≡ be0d)

≡ be0de1 (de1 ≡ de1c)

≡ be0e1 (be0 ≡ be0d)

• If e = e
(d)
0 , first note that if b ≡ 0, then the claim follows trivially. Otherwise, let

h =
∑
{α ∈ At : ∃n.JbK ⋄ Jde0Kn ⋄ JαK ̸= ∅}

We make the following observations.

(i) Since b ̸≡ 0, we have that JbK ⋄ Jde0K0 ⋄ JbK = JbK ̸= ∅, and thus b ≤ h.

(ii) If α ≤ hd, then in particular γwα ∈ JbK ⋄ Jde0Kn ⋄ JαK for some n and γw.

Since α ≤ d, it follows that γwα ∈ Jbe(d)0 K = Jbe(d)0 cK, and thus α ≤ c.

Consequently, hd ≤ c.

166



(iii) If αwβ ∈ Jdhe0K, then α ≤ h and hence there exists an n such that γxα ∈

JbK ⋄ Jde0Kn ⋄ JβK. But then γxαwβ ∈ JbK ⋄ Jde0Kn+1 ⋄ JβK, and therefore

β ≤ h. We can conclude that Jdhe0K = Jdhe0hK; by induction, it follows

that dhe0h ≡ dhe0.

Using these observations and the invariance lemma (Lemma 5.3.11), we derive

be
(d)
0 c ≡ bhe

(d)
0 c (By (i))

≡ b · (he0)(d)hc (Invariance and (iii))

≡ b · (he0)(d)dhc (W4)

≡ b · (he0)(d)dh (By (ii))

≡ b · (he0)(d)h (W4)

≡ bhe0
(d) (Invariance and (iii))

≡ be0
(d) (By (i))

This completes the proof.

As a special case, the fact that a program has no traces at all can be shown axiomati-

cally.

Corollary 5.3.13 (Partial Completeness). If JeK = ∅, then e ≡ 0.

Proof. We have that J1 · eK = JeK = ∅ = J1 · e · 0K, and thus e ≡ 1 · e ≡ 1 · e · 0 ≡ 0 by

Theorem 5.3.12.

5.4 Automaton Model and Kleene Theorem

In this section, we present an automaton model that accepts traces (i.e., guarded strings)

of GKAT programs. We then present language-preserving constructions from GKAT expres-

sions to automata, and conversely, from automata to expressions. Our automaton model

167



s1 s2 s3

α

β/p c/q

Figure 5.3: Graphical depiction of a G-coalgebra ⟨X, δX ⟩. States are represented by dots,
labeled with the name of that state whenever relevant. In this example, δX (s1)(α) = 1,
and δX (s1)(β) = (p, s2). When γ ∈ At such that δX (s)(γ) = 0, we draw no edge at all. We
may abbreviate drawings by combining transitions with the same target into a Boolean
expression; for instance, when c = α + β, we have δX (s2)(α) = δX (s2)(β) = (q, s3).

is rich enough to express programs that go beyond GKAT; in particular, it can encode

traces of programs with goto statements that have no equivalent GKAT program [98]. In

order to obtain a Kleene Theorem for GKAT, that is, a correspondence between automata

and GKAT programs, we identify conditions ensuring that the language accepted by an

automaton corresponds to a valid GKAT program.

5.4.1 Automata and Languages

Let G be the functor GX = (2 + Σ×X)At, where 2 = {0, 1} is the two-element set. A

G-coalgebra is a pair X = ⟨X, δX ⟩ with state space X and transition map δX : X → GX.

The outcomes 1 and 0 model immediate acceptance and rejection, respectively. From

each state s ∈ X, given an input α ∈ At, the coalgebra performs exactly one of three

possible actions: it either produces an output p ∈ Σ and moves to a new state t, halts

and accepts, or halts and rejects; that is, either δX (s)(α) = (p, t), or δX (s)(α) = 1, or

δX (s)(α) = 0.

A G-automaton is a G-coalgebra with a designated start state ι, commonly denoted

as a triple X = ⟨X, δX , ι⟩. We can represent G-coalgebras graphically as in Figure 5.3.

A G-coalgebra X = ⟨X, δX ⟩ can be viewed both as an acceptor of finite guarded

strings GS = At · (Σ · At)∗, or as an acceptor of finite and infinite guarded strings

GS∪ω-GS, where ω-GS := (At · Σ)ω. Acceptance for a state s is captured by the following

168



equivalences:

accept(s, α) ⇐⇒ δX (s)(α) = 1

accept(s, αpx) ⇐⇒ ∃t. δX (s)(α) = (p, t) ∧ accept(t, x)

(5.2)

The language of finite guarded strings ℓX (s) ⊆ GS accepted from state s ∈ X is the least

fixpoint solution of the above system; in other words, we interpret (5.2) inductively. The

language of finite and infinite guarded strings LX (s) ⊆ GS ∪ ω-GS accepted from state s

is the greatest fixpoint solution of the above system; in other words, we interpret (5.2)

coinductively.3 The two languages are related by the equation ℓX (s) = LX (s) ∩ GS.

Our focus will mostly be on the finite-string semantics, ℓX (−) : X → 2GS, since GKAT

expressions denote finite-string languages, J−K : Exp→ 2GS.

The language accepted by a G-automaton X = ⟨X, δX , ι⟩ is the language accepted

by its initial state ι. Just like the language model for GKAT programs, the language

semantics of a G-automaton satisfies the determinacy property (see Definition 5.2.2).

In fact, every language that satisfies the determinacy property can be recognized by

a G-automaton, possibly with infinitely many states. (We will prove this formally in

Theorem 5.5.8.)

5.4.2 Expressions to Automata: a Thompson Construction

We translate expressions to G-coalgebras using a construction reminiscent of Thompson’s

construction for regular expressions [169], where automata are formed by induction on

the structure of the expressions and combined to reflect the various GKAT operations.

We first set some notation. A pseudostate is an element h ∈ GX. We let 1 ∈ GX

denote the pseudostate 1(α) = 1, i.e., the constant function returning 1. Let X = ⟨X, δ⟩
3The set F of maps F : X → 2GS∪ω-GS ordered pointwise by subset inclusion forms a complete lattice.

The monotone map

τ : F → F , τ(F ) = λs ∈ X .{α ∈ At | δX (s)(α) = 1} ∪ {apx | ∃t. δX (s)(α) = (p, t) ∧ x ∈ F (t)}

arising from (5.2) has least and greatest fixpoints, ℓX and LX , by the Knaster-Tarksi theorem.

169



e Xe δe ∈ Xe → GXe ιe(α) ∈ 2 + Σ×Xe

b ∅ ∅ [α ≤ b]

p {∗} ∗ 7→ 1 (p, ∗)

f +b g Xf +Xg δf + δg

ιf (α) α ≤ b

ιg(α) α ≤ b

f · g Xf +Xg (δf + δg)[Xf , ιg]

ιf (α) ιf (α) ̸= 1

ιg(α) ιf (α) = 1

f (b) Xf δf [Xf , ιe]


1 α ≤ b

0 α ≤ b, ιf (α) = 1

ιf (α) α ≤ b, ιf (α) ̸= 1

Figure 5.4: Construction of the Thompson coalgebra Xe = ⟨Xe, δe⟩ with initial pseu-
dostate ιe.

be a G-coalgebra. The uniform continuation of Y ⊆ X by h ∈ GX (in X ) is the coalgebra

X [Y, h] := ⟨X, δ[Y, h]⟩, where

δ[Y, h](x)(α) :=

h(α) if x ∈ Y, δ(x)(α) = 1

δ(x)(α) otherwise.

Intuitively, uniform continuation replaces termination of states in a region Y of X by a

transition described by h ∈ GX; this construction will be useful for modeling operations

that perform some kind of sequencing. Figure 5.5 schematically describes the uniform

continuation operation, illustrating different changes to the automaton that can occur

as a result; observe that since h may have transitions into Y , uniform continuation can

introduce loops.

We will also need coproducts to combine coalgebras. Intuitively, the coproduct of

two coalgebras is just the juxtaposition of both coalgebras. Formally, for X = ⟨X, δ1⟩ and

Y = ⟨Y, δ2⟩, we write the coproduct as X + Y = ⟨X + Y, δ1 + δ2⟩, where X + Y is the

disjoint union of X and Y , and δ1 + δ2 : X + Y → G(X + Y ) is the map that applies δ1 to

states in X and δ2 to states in Y .

Figure 5.4 presents our translation from expressions e to coalgebras Xe using co-

170



Y

α β γ

β

β/q γ/p
β/p

h

γ/p

β/q

α

Figure 5.5: Schematic explanation of the uniform continuation X [Y, h] of X , where
Y ⊆ X and h ∈ GX. The pseudostate h and its transitions are drawn in blue. Transitions
present in X unchanged by the extension are drawn in black; grayed out transitions are
replaced by transitions drawn in red as a result of the extension.

products and uniform continuations, and Figure 5.6 sketches the transformations used

to construct the automaton of a term from its subterms. We model initial states as

pseudostates, rather than proper states. This trick avoids the ε-transitions that appear in

the classical Thompson construction and yields compact, linear-size automata. Figure 5.7

depicts some examples of our construction.

To turn the resulting coalgebra into an automaton, we simply convert the initial

pseudostate into a proper state. Formally, when Xe = ⟨Xe, δe⟩, we write X ι
e for the

G-automaton ⟨{ι}+Xe, δ
ι
e, ι⟩, where for x ∈ Xe, we set διe(x) = δe(x) as well as διe(ι) = ιe.

We call Xe and X ι
e the Thompson coalgebra and Thompson automaton for e, respectively.

The construction translates expressions to equivalent automata in the following sense:

Theorem 5.4.1 (Correctness I). The Thompson automaton for e recognizes JeK, that is

ℓX
ι
e (ι) = JeK.

Proof Sketch. This is a direct corollary of Proposition 5.4.5 and Theorem 5.4.8, to follow.

Moreover, the construction is efficiently implementable and yields small automata:

Proposition 5.4.2. The Thompson automaton for e is effectively constructible in time O(|e|)

and has #Σ(e) + 1 (thus, O(|e|)) states, where |At| is considered a constant, |e| denotes the

171



Xf Xg

ιf

α
/
p

β
/
q

γ

β

ιg

α
/
r

β
/
s

η

α

ιe

α
/
p

β
/
s

γ

(a) e = f +b g, with α ≤ b
and β ≤ b.

Xf Xg

ιf

α
/
p

β, γ

β

ιg

β
/
r

γ
/
s

α

ιe

α
/
p

γ
/
s

β

β
/r

(b) e = f · g

Xf

ιf

β
/
p

γ

β

ιe

β
/
p

α

β
/
p

(c) e = f (b), with β, γ ≤ b
and α ≤ b

Figure 5.6: Schematic depiction of the Thompson construction for guarded union,
sequencing and guarded loop operators. The initial psuedostates of the automata for f
and g are depicted in gray. Transitions in red are present in the automata for f and g,
but overridden by a uniform extension with the transitions in blue.

ιe ∗p
b/p

b b

b/p

(a) e = while b do p

ιf

∗q ∗r

c/
q c/r

1 1

(b) f = if c then q else r

ιg ∗p

∗q ∗r

b/p
b/p

bc/q bc/r

bc/r

bc
/q

1 1

(c) g = e · f

Figure 5.7: Concrete construction of an automaton using the Thompson construction.
First, we construct an automaton for e, then an automaton for f , and finally we combine
these into an automaton for g.

size of the expression, and #Σ(e) denotes the number of occurrences of actions in e.

5.4.3 Automata to Expressions: Solving Linear Systems

The previous construction shows that every GKAT expression can be translated to an

equivalent G-automaton. In this section we consider the reverse direction, from G-

automata to GKAT expressions. The main idea is to interpret the coalgebra structure as

a system of equations, with one variable and equation per state, and show that there

172



are GKAT expressions solving the system, modulo equivalence; this idea goes back to

Conway [27] and Backhouse [11]. Not all systems arising from G-coalgebras have a

solution, and so not all G-coalgebras can be captured by GKAT expressions. However,

we identify a subclass of G-coalgebras that can be represented as GKAT terms. Then, by

showing that this class contains the coalgebras produced by our expressions-to-automata

translation, we obtain an equivalence between GKAT expressions and coalgebras in this

class.

We start by defining when a map assigning expressions to coalgebra states is a

solution.

Definition 5.4.3 (Solution). Let X = ⟨X, δX ⟩ be a G-coalgebra. We say that s : X → Exp

is a solution to X if for all x ∈ X it holds that

s(x) ≡ +
α≤1

⌊δX (x)(α)⌋s where ⌊0⌋s := 0 ⌊1⌋s := 1 ⌊⟨p, x⟩⌋s := p · s(x)

Example 5.4.4. Consider the examples of Thompson automata in Figure 5.7.

(a) Solving the first automaton requires, by Definition 5.4.3, finding an expression

se(∗p) such that se(∗p) ≡ p · se(∗p) +b 1. By (W1), we know that se(∗p) = p(b) is

valid; in fact, (W3) tells us that this choice of x is the only valid solution up to

GKAT-equivalence. If we include ιe as a state, we can choose se(ιe) = p(b) as well.

(b) The second automaton has an easy solution: both ∗q and ∗r are solved by setting

sf (∗q) = sf (∗r) = 1. If we include ιf as a state, we can choose sf (ιf ) = q · sf (∗q) +b

r · sf (∗r) ≡ q +b r.

(c) The third automaton was constructed from the first two; similarly, we can construct

its solution from the solutions to the first two. We set sg(∗p) = se(∗p) · sf (ιf ), and

sg(∗q) = sf (∗q), and sg(∗r) = sf (∗r). If we include ιg as a state, we can choose

sg(ιg) = se(ιe) · sf (ιf ).

Solutions are language-preserving maps from states to expressions in the following sense:

173



Proposition 5.4.5. If s solves X and x is a state, then Js(x)K = ℓX (x).

Proof Sketch. We show that w ∈ Js(x)K ⇔ w ∈ ℓX (x) by induction on the length of

w ∈ GS.

We would like to build solutions for G-coalgebras, but Kozen and Tseng [98] showed

that this is not possible in general: there is a 3-state G-coalgebra that does not correspond

to any while program, but instead can only be modeled by a program with multi-level

breaks. In order to obtain an exact correspondence to GKAT programs, we first identify

a sufficient condition for G-coalgebras to permit solutions, and then show that the

Thompson coalgebra defined previously meets this condition.

Definition 5.4.6 (Simple Coalgebra). Let X = ⟨X, δX ⟩ and Y = ⟨Y, δY⟩ range over

G-coalgebras. The collection of simple coalgebras is inductively defined as follows:

(S1) If X has no transitions, i.e., if δX ∈ X → 2At, then X is simple.

(S2) If X and Y are simple, and h ∈ G(X + Y ) is a pseudostate, then (X + Y)[X, h] is

simple.

We are now ready to construct solutions to simple coalgebras.

Theorem 5.4.7 (Existence of Solutions). Any simple coalgebra admits a solution.

Proof Sketch. Assume X is simple. We proceed by rule induction on the simplicity

derivation.

(S1) Suppose δX : X → 2At. Then

sX (x) :=
∑
{α ∈ At | δX (x)(α) = 1}

is a solution to X .

174



(S2) Let Y = ⟨Y, δY⟩ and Z = ⟨Z, δZ⟩ be simple G-coalgebras, and let h ∈ G(Y + Z) be

such that X = (Y + Z)[Y, h]. By induction, Y and Z admit solutions sY and sZ

respectively; we need to find a solution sX to X = Y + Z. The idea is to retain

the solution that we had for states in Z—whose behavior has not changed under

uniform continuation—while modifying the solution to states in Y in order to

account for transitions from h. To this end, we choose the following expressions:

b :=
∑
{α ∈ At | h(α) ∈ Σ×X} ℓ :=

(
+
α≤b

⌊h(α)⌋sY
)(b)
·+
α≤b

⌊h(α)⌋sZ

We can then define s as follows:

sX (x) :=

sY(x) · ℓ x ∈ Y

sZ(x) x ∈ Z

A detailed argument showing that s is a solution can be found in the appendix.

As it turns out, we can do a round-trip, showing that the solution to the (initial state of

the) Thompson automaton for an expression is equivalent to the original expression.

Theorem 5.4.8 (Correctness II). Let e ∈ Exp. Then X ι
e admits a solution s such that

e ≡ s(ι).

Finally, we show that the automata construction of the previous section gives simple

automata.

Theorem 5.4.9 (Simplicity of Thompson construction). Xe and X ι
e are simple for all

expressions e.

Proof. We proceed by induction on e. In the base, let Z = ⟨∅,∅⟩ and I = ⟨{∗}, ∗ 7→ 1⟩

denote the coalgebras with no states and with a single all-accepting state, respectively.

Note that Z and I are simple, and that for b ∈ BExp and p ∈ Σ we have Xb = Z and

Xp = I.

175



All of the operations used to build Xe, as detailed in Figure 5.4, can be phrased

in terms of an appropriate uniform continuation of a coproduct; for instance, when

e = f (b) we have that Xe = (Xf + I)[Xf , ιe]. Consequently, the Thompson automaton Xe

is simple by construction. Finally, observe that X ι
e = (I +Xe)[{∗}, ιe]; hence, X ι

e is simple

as well.

Theorems 5.4.1, 5.4.7, and 5.4.9 now give us the desired Kleene theorem.

Corollary 5.4.10 (Kleene Theorem). Let L ⊆ GS. The following are equivalent:

1. L = JeK for a GKAT expression e.

2. L = ℓX (ι) for a simple, finite-state G-automaton X with initial state ι.

5.5 Decision Procedure

We saw in the last section that GKAT expressions can be efficiently converted to equivalent

automata with a linear number of states. Equivalence of automata can be established

algorithmically, supporting a decision procedure for GKAT that is significantly more

efficient than decision procedures for KAT. In this section, we describe our algorithm.

First, we define bisimilarity of automata states in the usual way [98].

Definition 5.5.1 (Bisimilarity). Let X and Y be G-coalgebras. A bisimulation between X

and Y is a binary relation R ⊆ X × Y such that if x R y, then the following implications

hold:

(i) if δX (x)(α) ∈ 2, then δY(y)(α) = δX(x)(α); and

(ii) if δX (x)(α) = (p, x′), then δY(y)(α) = (p, y′) and x′ R y′ for some y′.

States x and y are called bisimilar, denoted x ∼ y, if there exists a bisimulation relating

x and y.

176



As usual, we would like to reduce automata equivalence to bisimilarity. It is easy to see

that bisimilar states recognize the same language.

Lemma 5.5.2. If X and Y are G-coalgebras with bisimilar states x ∼ y, then ℓX (x) = ℓY(y).

Proof. We verify that w ∈ ℓX (x)⇔ w ∈ ℓY(y) by induction on the length of w ∈ GS:

• For α ∈ GS, we have α ∈ ℓX (x)⇔ δX (x)(α) = 1⇔ δY(y)(α) = 1⇔ α ∈ ℓY(y).

• For αpw ∈ GS, we use bisimilarity and the induction hypothesis to derive

αpw ∈ ℓX (x) ⇐⇒ ∃x′. δX (x)(α) = (p, x′) ∧ w ∈ ℓX (x′)

⇐⇒ ∃y′. δY(y)(α) = (p, y′) ∧ w ∈ ℓY(y′) ⇐⇒ αpw ∈ ℓY(y).

The reverse direction, however, does not hold for G-coalgebras in general. To see the

problem, consider the following automaton, where α ∈ At is an atom and p ∈ Σ is an

action:
s1 s2α/p

Both states recognize the empty language, that is i.e., ℓ(s1) = ℓ(s2) = ∅; but s2 rejects

immediately, whereas s1 may first take a transition. As a result, s1 and s2 are not bisimilar.

Intuitively, the language accepted by a state does not distinguish between early and

late rejection, whereas bisimilarity does. We solve this by disallowing late rejection, i.e.,

transitions that can never lead to an accepting state; we call coalgebras that respect this

restriction normal.

5.5.1 Normal Coalgebras

We classify states and coalgebras as follows.

Definition 5.5.3 (Live, Dead, Normal). Let X = ⟨X, δX ⟩ denote a G-coalgebra. A state

s ∈ X is accepting if δX (s)(α) = 1 for some α ∈ At. A state is live if it can transition to an

177



accepting state in a finite number of steps, or dead otherwise. A coalgebra is normal if it

contains no transitions to dead states.

Remark 5.5.4. Note that, equivalently, a state is live iff ℓX (s) ̸= ∅ and dead iff ℓX (s) = ∅.

Dead states can exist in a normal coalgebra, but they must immediately reject all α ∈ At,

since any successor of a dead state would also be dead.

Example 5.5.5. Consider the following automaton.

ι s1 s2s3 α/pβ/p α/q

α/qα/q

β

The state s3 is accepting. The states ι and s3 are live, since they can reach an accepting

state. The states s1 and s2 are dead, since they can only reach non-accepting states.

The automaton is not normal, since it contains the transitions ι
α/p−−→ s1, s1

α/q−−→ s2, and

s2
α/q−−→ s2 to dead states s1 and s2. We can normalize the automaton by removing these

transitions:
ι s1 s2s3 β/p

α/q

β

The resulting automaton is normal: the dead states s1 and s2 reject all α ∈ At immediately.

The example shows how coalgebra can be normalized. Formally, let X = ⟨X, δ⟩

denote a coalgebra with dead states D ⊆ X. We define the normalized coalgebra

X̂ := ⟨X, δ̂⟩ as follows:

δ̂(s)(α) :=

0 if δ(s)(α) ∈ Σ×D

δ(s)(α) otherwise.

Lemma 5.5.6 (Correctness of normalization). Let X be a G-coalgebra. Then the following

holds:

178



(i) X and X̂ have the same solutions: that is, s : X → Exp solves X if and only if s solves

X̂ ; and

(ii) X and X̂ accept the same languages: that is, ℓX = ℓX̂ ; and

(iii) X̂ is normal.

Proof. For the first claim, suppose s solves X . It suffices (by Lemma C.1.3) to show that

for x ∈ X and α ∈ At we have α · s(x) ≡ α · ⌊δX̂ (x)(α)⌋s. We have two cases.

• If δX (x)(α) = (p, x′) with x′ dead, then by Proposition 5.4.5 we know that

Js(x′)K = ℓX (x′) = ∅. By Corollary 5.3.13, it follows that s(x′) ≡ 0. Recalling that

δX̂ (x)(α) = 0 by construction,

α · s(x) ≡ α · ⌊δX (x)(α)⌋s ≡ α · p · s(x′) ≡ α · 0 ≡ α · ⌊δX̂ (x)(α)⌋s

• Otherwise, we know that δX̂ (x)(α) = δX (x)(α), and thus

α · s(x) ≡ α · ⌊δX (x)(α)⌋s ≡ α · ⌊δX̂ (x)(α)⌋s

The other direction of the first claim can be shown analogously.

For the second claim, we can establish x ∈ ℓX (s) ⇔ x ∈ ℓX̂ (s) for all states s by a

straightforward induction on the length of x ∈ GS, using that dead states accept the

empty language.

For the third claim, we note that the dead states of X and X̂ coincide by claim two;

thus X̂ has no transition to dead states by construction.

5.5.2 Bisimilarity for Normal Coalgebras

We would like to show that, for normal coalgebras, states are bisimilar if and only if

they accept the same language. This will allow us to reduce language-equivalence to

bisimilarity, which is easy to establish algorithmically. We need to take a slight detour.

179



Recall the determinacy property satisfied by GKAT languages (Definition 5.2.2): a

language L ⊆ GS is deterministic if, whenever strings x, y ∈ L agree on the first n atoms,

they also agree on the first n actions (or absence thereof). Let L ⊆ 2GS denote the set of

all such deterministic languages and define, for α an atom and p an action:

Lαp := {x ∈ GS | αpx ∈ L}.

L carries a coalgebra structure ⟨L, δL⟩ whose transition map δL is the semantic Brzo-

zowski derivative:

δL(L)(α) :=


(p, Lαp) if Lαp ̸= ∅

1 if α ∈ L

0 otherwise.

Note that the map is well-defined by determinacy: precisely one of the three cases holds.

Next, we define structure-preserving maps between G-coalgebras in the usual way:

Definition 5.5.7 (Homomorphism). A homomorphism between G-coalgebras X and Y

is a map h : X → Y from states of X to states of Y that respects the transition structures

in the following sense:

δY ◦ h = (Gh) ◦ δX .

More concretely, for all α ∈ At, p ∈ Σ, and x, x′ ∈ X,

(i) if δX (x)(α) ∈ 2, then δY(h(x))(α) = δX(x)(α); and

(ii) if δX (x)(α) = (p, x′), then δY(h(x))(α) = (p, h(x′)).

We can now show that the acceptance map ℓX : X → 2GS is structure-preserving

in the above sense. Moreover, it is the only structure-preserving map from states to

deterministic languages:

Theorem 5.5.8 (Final Coalgebra). If X is normal, then ℓX : X → 2GS is the unique

homomorphism X → L.

180



Proof. We need to establish the following claims:

(1) the language ℓX (s) is deterministic for all states s ∈ X;

(2) the map ℓX is a homomorphism X → L; and

(3) the map ℓX is the unique homomorphism X → L.

Before we turn to proving these claims, we establish the following implication:

δX (s)(α) = (p, t) =⇒ ℓX (s)αp = ℓX (t). (5.3)

To see that it holds, we observe that given the premise, we have

w ∈ ℓX (s)αp ⇐⇒ αpw ∈ ℓX (s) ⇐⇒ w ∈ ℓX (t).

We can now show the main claims:

(1) We begin by showing that ℓX (s) is deterministic for s ∈ X. We need to show that

x = α1p1α2p2 · · ·αnpnx
′ ∈ ℓX (s)

y = α1q1α2q2 · · ·αnqny
′ ∈ ℓX (s)

 =⇒ pi = qi (∀1 ≤ i ≤ n),

where the final actions may be absent (i.e., pn = x′ = ε or qn = y′ = ε) but all other

actions are present (i.e., pi, qi ∈ Σ for i < n). We proceed by induction on n. The

case n = 0 is trivially true. For n ≥ 1, take x and y as above. We proceed by case

distinction:

• If p1 is absent, i.e. n = 1 and p1 = x′ = ε , then by Equation (5.2) we must

have δX (s)(α1) = 1 and thus cannot have q1 ∈ Σ; hence q1 is also absent, as

required.

• Otherwise p1 ∈ Σ is a proper action. Then by Equation (5.2), there exist

t, t′ ∈ X such that:

δX (s)(α1) = (p1, t) ∧ α2p2 · · ·αnpnx
′ ∈ ℓX (t)

δX (s)(α1) = (q1, t
′) ∧ α2q2 · · ·αnqny

′ ∈ ℓX (t′)

181



This implies (p1, t) = (q1, t
′). Thus p1 = q1 follows immediately and pi = qi for

i > 1 follows by induction hypothesis.

(2) Next, we show that ℓX is a homomorphism: (GℓX ) ◦ δX = δL ◦ ℓX .

If δX (x)(α) = 1, then α ∈ ℓX (x) and hence δL(ℓX (x))(α) = 1 by definition of δL.

If δX (x)(α) = 0, then α ̸∈ ℓX (x) and for all p ∈ Σ, w ∈ GS, αpw ̸∈ ℓX (x) and hence

ℓX (x)αp = ∅. Thus δL(ℓX (x))(α) = 0 by definition of δL.

If δX (x)(α) = ⟨p, y⟩, then y is live by normality and thus there exists a word

wy ∈ ℓX (y). Thus,

αpwy ∈ ℓX (x) (def. ℓX )

=⇒ wy ∈ ℓX (x)αp (def. Lαp)

=⇒ δL(ℓX (x))(α) = ⟨p, ℓX (x)αp⟩ (def. δL)

=⇒ δL(ℓX (x))(α) = ⟨p, ℓX (y)⟩ (Equation (5.3))

(3) For uniqueness, let L denote an arbitrary homomorphism X → L. We will show

that

w ∈ L(x) ⇐⇒ w ∈ ℓX (x)

by induction on |w|.

For w = α,

α ∈ L(x) ⇐⇒ δL(L(x)) = 1 (def. δ)

⇐⇒ δX (x)(α) = 1 (L is hom.)

⇐⇒ α ∈ ℓX (x) (def. ℓX )

182



For w = αpv,

αpv ∈ L(x)

⇐⇒ δL(L(x))(α) = ⟨p, L(x)αp⟩ ∧ v ∈ L(x)αp (def. δL, Lαp)

⇐⇒ ∃y. δX (x)(α) = ⟨p, y⟩ ∧ v ∈ L(y) (L is hom., Equation (5.3))

⇐⇒ ∃y. δX (x)(α) = ⟨p, y⟩ ∧ v ∈ ℓX (y) (induction)

⇐⇒ αpv ∈ ℓX (x) (def. ℓX )

This concludes the proof.

Note that, since the identity function is trivially a homomorphism, Theorem 5.5.8

implies that ℓL is the identity. That is, in the G-coalgebra L, the state L ∈ L accepts the

language L! This proves that every deterministic language is recognized by a G-coalgebra,

though possibly with an infinite number of states.

The property from Theorem 5.5.8 says that L is final for normal G-coalgebras. The

desired connection between bisimilarity and language-equivalence is then a standard

corollary [149]:

Corollary 5.5.9. Let X and Y be normal G-coalgebras with states s and t. The following

are equivalent:

(i) s ∼ t;

(ii) ℓX (s) = ℓY(t).

Proof. The implication from (i) to (ii) is Lemma 5.5.2. For the implication from (ii) to

(i), we observe that the relation R := {(s, t) ∈ X × Y | ℓX (s) = ℓY(t)} is a bisimulation,

using that ℓX and ℓY are homomorphisms by Theorem 5.5.8:

• Suppose s R t and δX (s)(α) ∈ 2. Then δX (s)(α) = δL(ℓX (s))(α) = δL(ℓY(t))(α) =

δY(t)(α).

183



• Suppose s R t and δX (s)(α) = (p, s′). Then (p, ℓX (s′)) = δL(ℓX (s))(α) = δL(ℓY(t))(α).

This implies that δY(t)(α) = (p, t′) for some t′, using that ℓY is a homomorphism.

Hence

(p, ℓY(t′)) = δL(ℓY(t))(α) = (p, ℓX (s′))

by the above equation, which implies s′ R t′ as required.

5.5.3 Deciding Equivalence

We now have all the ingredients required for deciding efficiently whether a pair of

expressions are equivalent. Given two expressions e1 and e2, the algorithm proceeds as

follows:

1. Convert e1 and e2 to equivalent Thompson automata X1 and X2;

2. Normalize the automata, obtaining X̂1 and X̂2;

3. Check bisimilarity of the start states ι1 and ι2 using Hopcroft-Karp (see Algorithm 1);

4. Return true if ι1 ∼ ι2, or return false otherwise.

Theorem 5.5.10. The above algorithm decides whether Je1K = Je2K in time O(n · α(n)) for

|At| constant, where α denotes the inverse Ackermann function and n = |e1|+ |e2| bounds

the size of the expressions.

Proof. The algorithm is correct by Theorem 5.4.1, Lemma 5.5.6, and Corollary 5.5.9:

Je1K = Je2K ⇐⇒ ℓX1(ι1) = ℓX2(ι2) ⇐⇒ ℓX̂1(ι1) = ℓX̂2(ι2) ⇐⇒ ι1 ∼ ι2

For the complexity claim, we analyze the running time of steps (1)–(3) of the algorithm:

1. Recall by Proposition 5.4.2 that the Thompson construction converts ei to an

automaton with O(|ei|) states in time O(|ei|). Hence this step takes time O(n).

184



Algorithm 1: Hopcroft and Karp’s algorithm [65], adapted to G-automata.
Input: G-automata X = ⟨X, δX , ιX ⟩ and Y = ⟨Y, δY , ιY⟩, finite and normal; X,

Y disjoint.
Output: true if X and Y are equivalent, false otherwise.

1 todo← Queue.singleton(ιX , ιY); // state pairs that need to be checked
2 forest← UnionFind.disjointForest(X ⊎ Y );
3 while not todo.isEmpty() do
4 x, y ← todo.pop();
5 rx, ry ← forest.find(x), forest.find(y);
6 if rx = ry then continue; // safe to assume bisimilar
7 for α ∈ At do // check Definition 5.5.1
8 switch δX (x)(α), δY(y)(α) do
9 case b1, b2 with b1 = b2 do // case (i) of Definition 5.5.1

10 continue
11 case (p, x′), (p, y′) do // case (ii) of Definition 5.5.1
12 todo.push(x′, y′)
13 otherwise do return false; // not bisimilar
14 end
15 end
16 forest.union(rx, ry); // mark as bisimilar
17 end
18 return true;

2. Normalizing Xi amounts to computing its dead states. This requires time O(|ei|)

using a breadth-first traversal as follows (since there are at most |At| ∈ O(1)

transitions per state). We find all states that can reach an accepting state by first

marking all accepting states, and then performing a reverse breadth-first search

rooted at the accepting states. All marked states are then live; all unmarked states

are dead.

3. Since X̂i has O(|ei|) states and there are at most |At| ∈ O(1) transitions per state,

Hopcroft-Karp requires time O(n ·α(n)) by a classic result due to Tarjan [167].

Theorem 5.5.10 establishes a stark complexity gap with KAT—in KAT, the same deci-

sion problem is PSPACE-complete [26] even for a constant number of atoms. Intuitively,

185



the gap arises because GKAT expressions can be translated to linear-size determin-

istic automata, whereas KAT expressions may be nondeterministic and may require

exponential-size deterministic automata.

A shortcoming of Algorithm 1 is that it may scale poorly if the number of atoms |At|

is large. It is worth noting that there are symbolic variants [138] of the algorithm that

avoid enumerating At explicitly (cf. Line 7 of Algorithm 1), and can often scale to very

large alphabets in practice. In the worst case, however, we have the following hardness

result:

Proposition 5.5.11. If |At| is not a constant, GKAT equivalence is co-NP-hard, but in

PSPACE.

Proof. For the hardness result, we observe that Boolean unsatisfiability reduces to GKAT

equivalence: b ∈ BExp is unsatisfiable, interpreting the primitive tests as variables, iff

JbK = ∅. The PSPACE upper bound is inherited from KAT by Remark 5.2.1.

5.6 Completeness for the Language Model

In Section 5.3 we presented an axiomatization that is sound with respect to the language

model, and put forward the conjecture that it is also complete. We have already proven

a partial completeness result (Corollary 5.3.13). In this section, we return to this matter

and show we can prove completeness with a generalized version of (W3).

186



5.6.1 Systems of Left-Affine Equations

A system of left-affine equations (or simply, a system) is a finite set of equations of the

form

x1 = e11x1 +b11 · · ·+b1(n−1)
e1nxn +b1n d1

... (5.4)

xn = en1x1 +bn1 · · ·+bn(n−1)
ennxn +bnn dn

where +b associates to the right, the xi are variables, the eij are GKAT expressions, and

the bij and di are Boolean guards satisfying the following row-wise disjointness property

for row 1 ≤ i ≤ n:

• for all j ̸= k, the guards bij and bik are disjoint: bij · bik ≡BA 0; and

• for all 1 ≤ j ≤ n, the guards bij and di are disjoint: bij · di ≡BA 0.

Note that by the disjointness property, the ordering of the summands is irrelevant: the

system is invariant (up to ≡) under column permutations. A solution to such a system is

a function s : {x1, . . . ,xn} → Exp assigning expressions to variables such that, for row

1 ≤ i ≤ n:

s(xi) ≡ ei1 · s(x1) +bi1 · · ·+bi(n−1)
ein · s(xn) +bin di

Note that any finite G-coalgebra gives rise to a system where each variable represents

a state, and the equations define what it means to be a solution to the coalgebra (c.f.

Definition 5.4.3); indeed, a solution to a G-coalgebra is precisely a solution to its

corresponding system of equations, and vice versa. In particular, for a coalgebra X with

states x1 to xn, the parameters for equation i are:

bij =
∑
{α ∈ At | δX (xi)(α) ∈ Σ× {xj}}

di =
∑
{α ∈ At | δX (xi)(α) = 1} eij = +

α : δX (xi)(α)=(pα,xj)

pα

187



Systems arising from G-coalgebras have a useful property: for all eij, it holds

that E(eij) ≡ 0. This property is analogous to the empty word property in Salomaa’s

axiomatization of regular languages [152]; we call such systems Salomaa.

To obtain a general completeness result beyond Section 5.3.4, we assume an addi-

tional axiom:

Uniqueness axiom. Any system of left-affine equations that is Salomaa has at

most one solution, modulo ≡. More precisely, whenever s and s′ are solutions

to a Salomaa system, it holds that s(xi) ≡ s′(xi) for all 1 ≤ i ≤ n.

Remark 5.6.1. We do not assume that a solution always exists, but only that if it does,

then it is unique up to ≡. It would be unsound to assume that all such systems have solu-

tions; the following automata and its system, due to [98], constitute a counterexample:

x1

x2

x0

α0 + α3 α1 + α3

α2 + α3

α1/p01

α
2 /p

02

α0/p10

α 2
/p

12α 1
/p

21

α
0 /p

20

x0 ≡ p01x1 +α1 p02x2 +α2 (α0 + α3)

x1 ≡ p10x0 +α0 p12x2 +α2 (α1 + α3)

x2 ≡ p20x0 +α1 p21x1 +α0 (α2 + α3)

As shown in [98], no corresponding while program exists for this system.

When n = 1, a system is a single equation of the form x = ex+b d. In this case, (W1)

tells us that a solution does exist, namely e(b)d, and (W3) says that this solution is unique

up to ≡ under the proviso E(e) ≡ 0. In this sense, we can regard the uniqueness axiom

as a generalization of (W3) to systems with multiple variables.

Theorem 5.6.2. The uniqueness axiom is sound in the model of guarded strings: given

a system of left-affine equations as in (5.4) that is Salomaa, there exists at most one

R : {x1, . . . , xn} → 2GS s.t.

R(xi) =

( ⋃
1≤j≤n

JbijK ⋄ JeijK ⋄R(xj)

)
∪ JdiK

188



Proof Sketch. We recast this system as a matrix-vector equation of the form x = Mx+D

in the KAT of n-by-n matrices over 2GS; solutions to x in this equation are in one-to-one

correspondence with functions R as above. We then show that the map σ(x) = Mx+D

on the set of n-dimensional vectors over 2GS is contractive in a certain metric, and

therefore has a unique fixpoint by the Banach fixpoint theorem; hence, there can be at

most one solution x.

5.6.2 General Completeness

Using the generalized version of the fixpoint axiom, we can now establish completeness.

Theorem 5.6.3 (Completeness). The axioms are complete for all GKAT expressions: given

e1, e2 ∈ Exp,

Je1K = Je2K =⇒ e1 ≡ e2.

Proof. Let X1 and X2 be the Thompson automata corresponding to e1 and e2, with initial

states ι1 and ι2, respectively. Theorem 5.4.8 shows there are solutions s1 and s2, with

s1(ι1) ≡ e1 and s2(ι2) ≡ e2; and we know from Lemma 5.5.6 that s1 and s2 solve the

normalized automata X̂1 and X̂2. By Lemma 5.5.6, Theorem 5.4.1, and the premise, we

derive that X̂1 and X̂2 accept the same language:

ℓX̂1(ι1) = ℓX1(ι1) = Je1K = Je2K = ℓX2(ι2) = ℓX̂2(ι2).

This implies, by Corollary 5.5.9, that there is a bisimulation R between X̂1 and X̂2

relating ι1 and ι2. This bisimulation can be given the following transition structure,

δR(x1, x2)(α) :=


0 if δX̂1(x1)(α) = 0 and δX̂2(x2)(α) = 0

1 if δX̂1(x1)(α) = 1 and δX̂2(x2)(α) = 1

(p, (x′
1, x

′
2)) if δX̂1(x1)(α) = (p, x′

1) and δX̂2(x2)(α) = (p, x′
2)

turning R = ⟨R, δR⟩ into a G-coalgebra; note that δR is well-defined since R is a

bisimulation.

189



Now, define s′1, s
′
2 : R→ Exp by s′1(x1, x2) = s1(x1) and s′2(x1, x2) = s2(x2). We claim

that s′1 and s′2 are both solutions to R; to see this, note that for α ∈ At, (x1, x2) ∈ R, and

i ∈ {1, 2}, we have that

α · s′i(xi, xi) ≡ α · si(xi) (Def. s′i)

≡ α · ⌊δX̂i(xi)(α)⌋si (si solves X̂i)

≡ α · ⌊δR(x1, x2)(α)⌋s′i (Def. s′i and ⌊−⌋)

Since the system of left-affine equations induced by R is Salomaa, the uniqueness axiom

then tells us that s1(ι1) = s′1(ι1, ι2) ≡ s′2(ι1, ι2) = s2(ι2); hence, we can conclude that

e1 ≡ e2.

5.7 Related Work

Program schematology is one of the oldest areas of study in the mathematics of computing.

It is concerned with questions of translation and representability among and within

classes of program schemes, such as flowcharts, while programs, recursion schemes,

and schemes with various data structures such as counters, stacks, queues, and dictio-

naries [47, 66, 107, 131, 160]. A classical pursuit in this area was to find mechanisms

to transform unstructured flowcharts to structured form [10, 17, 86, 118, 127, 134,

143, 176]. A seminal result was the Böhm-Jacopini theorem [17], which established

that all flowcharts can be converted to while programs provided auxiliary variables

are introduced. Böhm and Jacopini conjectured that the use of auxiliary variables was

necessary in general, and this conjecture was confirmed independently by Ashcroft and

Manna [10] and Kosaraju [86].

Early results in program schematology, including those of [10, 17, 86], were typically

formulated at the first-order uninterpreted (schematic) level. However, many restructur-

ing operations can be accomplished without reference to first-order constructs. It was

190



shown in [98] that a purely propositional formulation of the Böhm-Jacopini theorem is

false: there is a three-state deterministic propositional flowchart that is not equivalent to

any propositional while program. As observed by a number of authors (e.g. [86, 134]),

while loops with multi-level breaks are sufficient to represent all deterministic flowcharts

without introducing auxiliary variables, and [86] established a strict hierarchy based on

the allowed levels of the multi-level breaks. That result was reformulated and proved at

the propositional level in [98].

The notions of functions on a domain, variables ranging over that domain, and

variable assignment are inherent in first-order logic, but are absent at the propositional

level. Moreover, many arguments rely on combinatorial graph restructuring operations,

which are difficult to formalize. Thus the value of the propositional view is twofold: it

operates at a higher level of abstraction and brings topological and coalgebraic concepts

and techniques to bear.

Propositional while programs and their encoding in terms of the regular operators

goes back to early work on Propositional Dynamic Logic [41]. GKAT as an independent

system and its semantics were introduced in [93, 98] under the name propositional

while programs, although the succinct form of the program operators is new here.

Also introduced in [93, 98] were the functor G and automaton model (Section 5.4),

the determinacy property (Definition 5.2.2) (called strict determinacy there), and the

concept of normality (Section 5.5.1) (called liveness there). The linear construction of

an automaton from a while program was sketched in [93, 98], based on earlier results

for KAT automata [92], but the complexity of deciding equivalence was not addressed.

The more rigorous alternative construction given here (Section 5.4.2) is needed to

establish simplicity, thereby enabling our Kleene theorem. The existence of a complete

axiomatization was not considered in [93, 98].

Guarded strings, which form the basis of our language semantics, were introduced

191



in [76].

The axiomatization we propose for GKAT is closely related to Salomaa’s axiomatiza-

tion of regular expressions based on unique fixed points [152] and to Silva’s coalgebraic

generalization of Kleene algebra [162]. The proof technique we used for completeness is

inspired by the general proof in [162].

The relational semantics is inspired by that for KAT [96], which goes back to work

on Dynamic Logic [97]. Because the fixpoint axiom uses a non-algebraic side condition

to guarantee soundness, extra care is needed to define the relational interpretation for

GKAT.

5.8 Conclusions and Future Directions

We have presented a comprehensive algebraic and coalgebraic study of GKAT, an abstract

programming language with uninterpreted actions. Our main contributions include: (i)

a new automata construction yielding a nearly linear time decidability result for program

equivalence; (ii) a Kleene theorem for GKAT providing an exact correspondence between

programs and a well-defined class of automata; and (iii) a set of sound and complete

axioms for program equivalence.

We hope this paper is only the beginning of a long and beautiful journey into under-

standing the (co)algebraic properties of efficient fragments of imperative programming

languages. We briefly discuss some limitations of our current development and our vision

for future work.

As in Salomaa’s axiomatization of KA, our axiomatization is not fully algebraic: (W3)

is only sensible for the language model. As a result, the current completeness proof

does not generalize to other natural models of interest—e.g., probabilistic or relational.

To overcome this limitation, we would like to extend Kozen’s axiomatization of KA to

GKAT by developing a natural order for GKAT programs. In the case of KA we have

192



e ≤ f :⇐⇒ e+ f = f , but this natural order is no longer definable in the absence of +

and so we need to axiomatize e ≤ f for GKAT programs directly. This appears to be the

main missing piece to obtain an algebraic axiomatization.

Various extensions of KAT to reason about richer programs (KAT+B!, NetKAT, Prob-

NetKAT) have been proposed, and it is natural to ask whether extending GKAT in similar

directions will yield interesting algebraic theories and decision procedures for domain-

specific applications. For instance, GKAT may be better suited for probabilistic models, as

it avoids mixing non-determinism and probabilities. Such models could facilitate reason-

ing about probabilistic programs, whose complex semantics would make a framework

for equational reasoning especially valuable.

In a different direction, a language model containing infinite traces could be inter-

esting in many applications, as it could serve as a model to reason about non-terminating

programs—e.g., loops in NetKAT in which packets may be forwarded forever. An inter-

esting open question is whether the infinite language model can be finitely axiomatized.

Finally, another direction would be to extend the GKAT decision procedure to handle

extra equations. For instance, both KAT+B! and NetKAT have independently-developed

decision procedures, that are similar in flavor, which raises the question of whether

the GKAT decision procedure could be extended in a more generic way, similar to the

Nelson-Oppen approach [119] for combining decision procedures used in SMT solving.

193





Part IV

Conclusion

195





Chapter 6

Conclusion

Computer networks have reached a size and complexity that makes configuring them

manually, through low-level interfaces, increasingly challenging and error-prone. This

dissertation proposed two instruments to address this: domain-specific programming

languages, to reduce the semantic gap between intent and configuration by providing

natural abstractions, thereby shifting much of the configuration burden to the compiler;

and automated verification tools, to predict network behavior reliably and to rule out

bugs before they manifest.

6.1 Thoughts on Practical Impact

The area of software-defined networking has seen exciting academic progress over the

last decade, going far beyond the contributions in this dissertation. Industry is showing

unusual eagerness to adapt these ideas quickly—e.g., network verification tools have

been deployed at Microsoft and Amazon—confirming that there is a practical need for

novel approaches to network configuration and management. The transfer of ideas from

academia to industry is further catalyzed by several startups [67, 121, 123, 124] in the

area.

Why is it that the means of configuring networks have remained essentially un-

197



changed for decades, but suddenly experience dramatic change? We speculate that the

following are two key driving forces:

• Cloud: With the shift to cloud computing, there has also been a shift from mostly-

static to ever-evolving networks. In other words, the lifetime of network config-

urations has dramatically decreased. There is a renewed need for reconfiguring

networks rapidly, reliably, and inexpensively.

• Scale: Many networks, such as data-center networks, have seen rapid growth in

terms of size and complexity: they send more packets, at faster speeds, between

more machines. This increases the potential for and cost of network misconfigu-

rations. Additionally, traditional approaches to network management are highly

manual, but manual reasoning scales poorly beyond a certain complexity.

This is an exciting time for academia to offer novel solutions to network management,

and lay a solid foundation upon which future growth in networking can flourish. This

dissertation hopes to make a contribution in this direction.

6.2 Future Directions

The development of NetKAT has been an educational case study that suggests some

promising directions for future work on the metatheory of programming language design.

Chapter 5 can be seen as a first step in this direction.

NetKAT was designed by taking Kleene algebra with Tests (KAT) as a (co)algebraic

foundation, and instantiating it with network primitives to obtain a network program-

ming language [6]. This approach is technically attractive: NetKAT inherited KAT’s rich

mathematical foundation—a compositional semantics, a sound and complete algebraic

axiomatization, a coalgebraic automaton model—with comparatively little adaptive

effort; and this foundation was the crucial enabler in the development of appealing

198



applications—e.g., the NetKAT decision procedure [45] and compiler (Chapter 2).

A General Framework. We believe the NetKAT approach to language design is com-

pelling. A natural question is therefore if it could be replicated for other domains,

ideally without having to manually adapt KAT’s metatheory each time. We envision a

(co)algebraic framework that yields a KAT, or GKAT, (together with a language model,

automata model, and sound and complete axiomatization) for a given set of primitives—

maybe specified through equations—and is general enough to subsume NetKAT.

On the algorithmic side, such a framework would yield a decision procedure, maybe

by combining a generic (G)KAT decision procedure with a user-provided procedure

for handling additional equations—specific to the (G)KAT in question—similar to the

Nelson-Oppen approach [119] that is used in SMT. Beckett et al. [13] have pursued

similar ideas, but their framework imposes a trace semantics. This semantics is too fine

for many application of interest: for example, it is not suitable for NetKAT.

Because GKAT has a faster decision procedure and requires less structure (no +)

than KAT, it may be better suited for certain (e.g., probabilistic) domains and may form

an attractive basis for the (co)algebraic framework we envision.

Extensibility. More generally, we lack metatheoretic tools that would help us decide if

and how a (co)algebraic system can be extended with additional primitives. For example,

extending NetKAT with probabilistic choice proved challenging, and resulted in a system

that is—despite its name, ProbNetKAT—not even a KAT. A framework as sketched above

would shed some light on this question of extensibility, by showing that a certain class of

extensions is always possible.

Probabilistic GKAT. Probabilistic programming languages are currently receiving re-

newed attention due to their use in machine learning. An intriguing direction for future

work is to extend GKAT with probabilistic choice to model such languages. The resulting

199



system may be used, for example, to reason about program transformations performed

by compilers or used in cryptographic proofs.

200



Bibliography

[1] Samson Abramsky and Achim Jung. 1994. Domain Theory. In Handbook of Logic

in Computer Science, S. Abramsky, Dov M. Gabbay, and T.S.E. Maibaum (Eds.).

Vol. 3. Clarendon Press, 1–168.

[2] S. B. Akers. 1978. Binary Decision Diagrams. IEEE Trans. Comput. 27, 6 (June

1978), 509–516. https://doi.org/10.1109/TC.1978.1675141

[3] Mohammad Al-Fares, Alex Loukissas, and Amin Vahdat. 2008. A Scalable, Com-

modity, Data Center Network Architecture. In SIGCOMM.

[4] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan, Nelson Huang,

and Amin Vahdat. 2010. Hedera: Dynamic Flow Scheduling for Data Center

Networks. In NSDI. 19–19.

[5] Ali Al-Shabibi, Marc De Leenheer, Matteo Gerola, Ayaka Koshibe, Guru Parulkar,

Elio Salvadori, and Bill Snow. 2014. OpenVirteX: Make Your Virtual SDNs Pro-

grammable. In HotSDN.

[6] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter

Kozen, Cole Schlesinger, and David Walker. 2014. NetKAT: Semantic Foundations

for Networks. In POPL. 113–126. https://doi.org/10.1145/2535838.2535862

[7] Allegra Angus and Dexter Kozen. 2001. Kleene Algebra with Tests and Program

201

https://doi.org/10.1109/TC.1978.1675141
https://doi.org/10.1145/2535838.2535862


Schematology. Technical Report TR2001-1844. Computer Science Department,

Cornell University.

[8] Valentin Antimirov. 1996. Partial Derivatives of Regular Expressions and Finite

Automaton Constructions. Theoretical Computer Science 155, 2 (1996), 291–319.

[9] David Applegate and Edith Cohen. 2003. Making intra-domain routing robust to

changing and uncertain traffic demands: understanding fundamental tradeoffs.

In SIGCOMM. 313–324. https://doi.org/10.1145/863955.863991

[10] E. Ashcroft and Z. Manna. 1972. The translation of GOTO programs into WHILE

programs. In Proceedings of IFIP Congress 71, C.V. Freiman, J.E. Griffith, and J.L.

Rosenfeld (Eds.), Vol. 1. North-Holland, Amsterdam, 250–255.

[11] Roland Backhouse. 1975. Closure algorithms and the star-height problem of regular

languages. Ph.D. Dissertation. University of London. http://ethos.bl.uk/

OrderDetails.do?uin=uk.bl.ethos.448525

[12] Adam Barth and Dexter Kozen. 2002. Equational Verification of Cache Blocking in

LU Decomposition using Kleene Algebra with Tests. Technical Report TR2002-1865.

Computer Science Department, Cornell University.

[13] Ryan Beckett, Eric Campbell, and Michael Greenberg. 2017. Kleene Algebra

Modulo Theories. CoRR abs/1707.02894 (2017). arXiv:1707.02894 http:

//arxiv.org/abs/1707.02894

[14] Ryan Beckett, Ratul Mahajan, Todd D. Millstein, Jitendra Padhye, and David

Walker. 2016. Don’t Mind the Gap: Bridging Network-wide Objectives and

Device-level Configurations. In SIGCOMM. 328–341. https://doi.org/10.1145/

2934872.2934909

202

https://doi.org/10.1145/863955.863991
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.448525
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.448525
http://arxiv.org/abs/1707.02894
http://arxiv.org/abs/1707.02894
https://doi.org/10.1145/2934872.2934909
https://doi.org/10.1145/2934872.2934909


[15] Manav Bhatia, Mach Chen, Sami Boutros, Marc Binderberger, and Jeffrey Haas.

2014. Bidirectional Forwarding Detection (BFD) on Link Aggregation Group

(LAG) Interfaces. RFC 7130. https://doi.org/10.17487/RFC7130

[16] Garrett Birkhoff and Thomas C. Bartee. 1970. Modern applied algebra. McGraw-

Hill, New York.

[17] C. Böhm and G. Jacopini. 1966. Flow Diagrams, Turing Machines and Languages

with only Two Formation Rules. Commun. ACM (May 1966), 366–371. https:

//doi.org/10.1145/355592.365646

[18] Filippo Bonchi and Damien Pous. 2013. Checking NFA equivalence with bisimu-

lations up to congruence. In Proc. Principles of Programming Languages (POPL).

ACM, New York, 457–468. https://doi.org/10.1145/2429069.2429124

[19] Johannes Borgström, Andrew D. Gordon, Michael Greenberg, James Margetson,

and Jurgen Van Gael. 2011. Measure Transformer Semantics for Bayesian Machine

Learning. In ESOP. https://doi.org/10.1007/978-3-642-19718-5_5

[20] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rexford,

Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and David Walker.

2014. P4: Programming Protocol-Independent Packet Processors. SIGCOMM CCR

44, 3 (July 2014), 87–95.

[21] Randal E. Bryant. 1986. Graph-Based Algorithms for Boolean Function Ma-

nipulation. IEEE Trans. Comput. 35, 8 (August 1986), 677–691. https:

//doi.org/10.1109/TC.1986.1676819

[22] Martin Casado, Nate Foster, and Arjun Guha. 2014. Abstractions for Software-

Defined Networks. CACM 57, 10 (October 2014), 86–95.

203

https://doi.org/10.17487/RFC7130
https://doi.org/10.1145/355592.365646
https://doi.org/10.1145/355592.365646
https://doi.org/10.1145/2429069.2429124
https://doi.org/10.1007/978-3-642-19718-5_5
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1109/TC.1986.1676819


[23] Martin Casado, Teemu Koponen, Rajiv Ramanathan, and Scott Shenker. 2010.

Virtualizing the Network Forwarding Plane. In PRESTO.

[24] Ernie Cohen. 1994. Lazy Caching in Kleene Algebra. http://citeseerx.ist.

psu.edu/viewdoc/summary?doi=10.1.1.57.5074

[25] Ernie Cohen. 1994. Using Kleene algebra to reason about concurrency control.

Technical Report. Telcordia, Morristown, NJ.

[26] Ernie Cohen, Dexter Kozen, and Frederick Smith. 1996. The complexity of Kleene

algebra with tests. Technical Report TR96-1598. Computer Science Department,

Cornell University.

[27] John Horton Conway. 1971. Regular Algebra and Finite Machines. Chapman and

Hall, London.

[28] R. Cruz. 1991. A calculus for network delay, parts I and II. IEEE Transactions on

Information Theory 37, 1 (January 1991), 114–141. https://doi.org/10.1109/

18.61110

[29] Emilie Danna, Subhasree Mandal, and Arjun Singh. 2012. A practical algorithm for

balancing the max-min fairness and throughput objectives in traffic engineering.

In INFOCOM. 846–854. https://doi.org/10.1109/INFCOM.2012.6195833

[30] Timothy A. Davis. 2004. Algorithm 832: UMFPACK V4.3—an Unsymmetric-

pattern Multifrontal Method. ACM Trans. Math. Softw. 30, 2 (June 2004), 196–

199. https://doi.org/10.1145/992200.992206

[31] Alessandra Di Pierro, Chris Hankin, and Herbert Wiklicky. 2005. Probabilistic

λ-calculus and quantitative program analysis. Journal of Logic and Computation

15, 2 (2005), 159–179. https://doi.org/10.1093/logcom/exi008

204

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.57.5074
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.57.5074
https://doi.org/10.1109/18.61110
https://doi.org/10.1109/18.61110
https://doi.org/10.1109/INFCOM.2012.6195833
https://doi.org/10.1145/992200.992206
https://doi.org/10.1093/logcom/exi008


[32] Roger Dingledine, Nick Mathewson, and Paul Syverson. 2004. Tor: The Second-

generation Onion Router. In USENIX Security Symposium (SSYM). 21–21.

[33] A. Dixit, P. Prakash, Y. C. Hu, and R. R. Kompella. 2013. On the impact of packet

spraying in data center networks. In IEEE INFOCOM. 2130–2138.

[34] Ernst-Erich Doberkat. 2007. Stochastic Relations: Foundations for Markov Transi-

tion Systems. Chapman Hall. https://doi.org/10.1201/9781584889427

[35] Rick Durrett. 2010. Probability: Theory and Examples. Cambridge University Press.

https://doi.org/10.1017/CBO9780511779398

[36] Abbas Edalat. 1994. Domain theory and integration. In LICS. 115–124.

[37] Abbas Edalat. 1996. The Scott topology induces the weak topology. In LICS.

372–381.

[38] Abbas Edalat and Reinhold Heckmann. 1998. A computational model for metric

spaces. Theoretical Computer Science 193, 1 (1998), 53–73. https://doi.org/

10.1016/S0304-3975(96)00243-5

[39] Andrew D. Ferguson, Arjun Guha, Chen Liang, Rodrigo Fonseca, and Shriram

Krishnamurthi. 2012. Hierarchical Policies for Software Defined Networks. In

HotSDN.

[40] Andrew D. Ferguson, Arjun Guha, Chen Liang, Rodrigo Fonseca, and Shriram

Krishnamurthi. 2013. Participatory Networking: An API for Application Control

of SDNs. In SIGCOMM.

[41] Michael J. Fischer and Richard E. Ladner. 1979. Propositional dynamic logic of

regular programs. J. Comput. Syst. Sci. 18, 2 (1979), 194–211.

205

https://doi.org/10.1201/9781584889427
https://doi.org/10.1017/CBO9780511779398
https://doi.org/10.1016/S0304-3975(96)00243-5
https://doi.org/10.1016/S0304-3975(96)00243-5


[42] B. Fortz, J. Rexford, and M. Thorup. 2002. Traffic Engineering with Traditional

IP Routing Protocols. IEEE Communications Magazine 40, 10 (October 2002),

118–124. https://doi.org/10.1109/MCOM.2002.1039866

[43] Nate Foster, Rob Harrison, Michael J. Freedman, Christopher Monsanto, Jennifer

Rexford, Alec Story, and David Walker. 2011. Frenetic: A Network Programming

Language. In ICFP. 279–291. https://doi.org/10.1145/2034773.2034812

[44] Nate Foster, Dexter Kozen, Konstantinos Mamouras, Mark Reitblatt, and Alexandra

Silva. 2016. Probabilistic NetKAT. In ESOP. 282–309. https://doi.org/10.

1007/978-3-662-49498-1_12

[45] Nate Foster, Dexter Kozen, Matthew Milano, Alexandra Silva, and Laure Thomp-

son. 2015. A Coalgebraic Decision Procedure for NetKAT. In POPL. ACM, 343–355.

https://doi.org/10.1145/2775051.2677011

[46] M. Fujita, P. C. McGeer, and J. C.-Y. Yang. 1997. Multi-Terminal Binary Decision

Diagrams: An Efficient DataStructure for Matrix Representation. Form. Meth-

ods Syst. Des. 10, 2-3 (April 1997), 149–169. https://doi.org/10.1023/A:

1008647823331

[47] Stephen J. Garland and David C. Luckham. 1973. Program schemes, recursion

schemes, and formal languages. J. Comput. System Sci. 7, 2 (1973), 119 – 160.

https://doi.org/10.1016/S0022-0000(73)80040-6

[48] Timon Gehr, Sasa Misailovic, Petar Tsankov, Laurent Vanbever, Pascal Wiesmann,

and Martin T. Vechev. 2018. Bayonet: Probabilistic Computer Network Analysis.

Available at https://github.com/eth-sri/bayonet/.

[49] Timon Gehr, Sasa Misailovic, Petar Tsankov, Laurent Vanbever, Pascal Wiesmann,

206

https://doi.org/10.1109/MCOM.2002.1039866
https://doi.org/10.1145/2034773.2034812
https://doi.org/10.1007/978-3-662-49498-1_12
https://doi.org/10.1007/978-3-662-49498-1_12
https://doi.org/10.1145/2775051.2677011
https://doi.org/10.1023/A:1008647823331
https://doi.org/10.1023/A:1008647823331
https://doi.org/10.1016/S0022-0000(73)80040-6
https://github.com/eth-sri/bayonet/


and Martin T. Vechev. 2018. Bayonet: probabilistic inference for networks. In

ACM SIGPLAN PLDI. 586–602.

[50] Timon Gehr, Sasa Misailovic, and Martin T. Vechev. 2016. PSI: Exact Symbolic

Inference for Probabilistic Programs. 62–83.

[51] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. 2011. Understanding

Network Failures in Data Centers: Measurement, Analysis, and Implications. In

SIGCOMM. 350–361.

[52] Michele Giry. 1982. A categorical approach to probability theory. In Categorical

aspects of topology and analysis. Springer, 68–85. https://doi.org/10.1007/

BFb0092872

[53] Andrew D. Gordon, Thomas A. Henzinger, Aditya V. Nori, and Sriram K. Rajamani.

2014. Probabilistic Programming. In FOSE. https://doi.org/10.1145/2593882.

2593900

[54] Andrew D Gordon, Thomas A Henzinger, Aditya V Nori, and Sriram K Rajamani.

2014. Probabilistic programming. In Proceedings of the on Future of Software

Engineering. ACM, 167–181. https://doi.org/10.1145/2593882.2593900

[55] S. Graham. 1988. Closure properties of a probabilistic powerdomain construction.

In MFPS. 213–233. https://doi.org/10.1007/3-540-19020-1_11

[56] Friedrich Gretz, Nils Jansen, Benjamin Lucien Kaminski, Joost-Pieter Katoen,

Annabelle McIver, and Federico Olmedo. 2015. Conditioning in Probabilistic

Programming. CoRR abs/1504.00198 (2015).

[57] Arjun Guha, Mark Reitblatt, and Nate Foster. 2013. Machine-Verified Network

Controllers. In PLDI.

207

https://doi.org/10.1007/BFb0092872
https://doi.org/10.1007/BFb0092872
https://doi.org/10.1145/2593882.2593900
https://doi.org/10.1145/2593882.2593900
https://doi.org/10.1145/2593882.2593900
https://doi.org/10.1007/3-540-19020-1_11


[58] Arpit Gupta, Laurent Vanbever, Muhammad Shahbaz, Sean Donovan, Brandon

Schlinker, Nick Feamster, Jennifer Rexford, Scott Shenker, Russ Clark, and Ethan

Katz-Bassett. 2014. SDX: A Software Defined Internet Exchange. In SIGCOMM.

[59] Stephen Gutz, Alec Story, Cole Schlesinger, and Nate Foster. 2012. Splendid

Isolation: A Slice Abstraction for Software-Defined Networks. In HotSDN.

[60] P. R. Halmos. 1950. Measure Theory. Van Nostrand. https://doi.org/10.1007/

978-1-4684-9440-2

[61] Jiayue He and Jennifer Rexford. 2008. Toward internet-wide multipath routing.

IEEE Network Magazine 22, 2 (2008), 16–21. https://doi.org/10.1109/MNET.

2008.4476066

[62] R. Heckmann. 1994. Probabilistic power domains, information systems, and lo-

cales. In MFPS, Vol. 802. 410–437. https://doi.org/10.1007/3-540-58027-1_

20

[63] Laurie J. Hendren, C. Donawa, Maryam Emami, Guang R. Gao, Justiani, and B.

Sridharan. 1992. Designing the McCAT Compiler Based on a Family of Structured

Intermediate Representations. In LCPC ’15: Proceedings of the 5th International

Workshop on Languages and Compilers for Parallel Computing. Springer, Berlin,

Heidelberg, 406–420.

[64] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay Gill,

Mohan Nanduri, and Roger Wattenhofer. 2013. Achieving high utilization

with software-driven WAN. In SIGCOMM. 15–26. https://doi.org/10.1145/

2534169.2486012

[65] John E. Hopcroft and Richard M. Karp. 1971. A linear algorithm for testing

equivalence of finite automata. Technical Report TR 71-114. Cornell University.

208

https://doi.org/10.1007/978-1-4684-9440-2
https://doi.org/10.1007/978-1-4684-9440-2
https://doi.org/10.1109/MNET.2008.4476066
https://doi.org/10.1109/MNET.2008.4476066
https://doi.org/10.1007/3-540-58027-1_20
https://doi.org/10.1007/3-540-58027-1_20
https://doi.org/10.1145/2534169.2486012
https://doi.org/10.1145/2534169.2486012


[66] I. Ianov. 1960. The Logical Schemes of Algorithms. Problems of Cybernetics (1960),

82–140.

[67] Intentionet. 2019. Intentionet. Retrieved September 6, 2019 from https:

//www.intentionet.com

[68] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun

Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, et al. 2013. B4:

Experience with a globally-deployed software defined WAN. In SIGCOMM. 3–14.

https://doi.org/10.1145/2534169.2486019

[69] Vimalkumar Jeyakumar, Mohammad Alizadeh, David Mazières, Balaji Prabhakar,

Albert Greenberg, and Changhoon Kim. 2013. EyeQ: Practical network perfor-

mance isolation at the edge. In NSDI. 297–311.

[70] Xin Jin, Jennifer Gossels, Jennifer Rexford, and David Walker. 2015. CoVisor: A

Compositional Hypervisor for Software-Defined Networks. In NSDI.

[71] Claire Jones. 1989. Probabilistic Non-determinism. Ph.D. Dissertation. University

of Edinburgh.

[72] C. Jones and G. Plotkin. 1989. A probabilistic powerdomain of evaluations. In

LICS. 186–195.

[73] Lavanya Jose, Lisa Yan, George Varghese, and Nick McKeown. 2015. Compiling

Packet Programs to Reconfigurable Switches. In NSDI.

[74] Achim Jung and Regina Tix. 1998. The Troublesome Probabilistic Powerdomain.

ENTCS 13 (1998), 70–91. https://doi.org/10.1016/S1571-0661(05)80216-6

[75] Srikanth Kandula, Dina Katabi, Bruce Davie, and Anna Charny. 2005. Walking

209

https://www.intentionet.com
https://www.intentionet.com
https://doi.org/10.1145/2534169.2486019
https://doi.org/10.1016/S1571-0661(05)80216-6


the tightrope: Responsive yet stable traffic engineering. In SIGCOMM. 253–264.

https://doi.org/10.1145/1090191.1080122

[76] Donald M. Kaplan. 1969. Regular Expressions and the Equivalence of Programs.

J. Comput. Syst. Sci. 3 (1969), 361–386.

[77] Peyman Kazemian, George Varghese, and Nick McKeown. 2012. Header Space

Analysis: Static Checking for Networks. In NSDI.

[78] John G Kemeny and James Laurie Snell. 1960. Finite markov chains. Vol. 356.

van Nostrand Princeton, NJ.

[79] Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew Caesar, and P. Brighten

Godfrey. 2013. VeriFlow: Verifying Network-Wide Invariants in Real Time. In

NSDI. https://doi.org/10.1145/2342441.2342452

[80] Changhoon Kim, Anirudh Sivaraman, Naga Katta, Antonin Bas, Advait Dixit,

and Lawrence J Wobker. 2015. In-band network telemetry via programmable

dataplanes. In SIGCOMM.

[81] Stephen C. Kleene. 1956. Representation of Events in Nerve Nets and Finite

Automata. Automata Studies (1956), 3–41.

[82] Simon Knight, Hung X. Nguyen, Nickolas Falkner, Rhys Bowden, and Matthew

Roughan. 2011. The Internet Topology Zoo. IEEE Journal on Selected Areas in

Communications (2011).

[83] Murali Kodialam, TV Lakshman, James B Orlin, and Sudipta Sengupta. 2009.

Oblivious routing of highly variable traffic in service overlays and IP backbones.

IEEE/ACM Transactions on Networking (TON) 17, 2 (2009), 459–472. https:

//doi.org/10.1109/TNET.2008.927257

210

https://doi.org/10.1145/1090191.1080122
https://doi.org/10.1145/2342441.2342452
https://doi.org/10.1109/TNET.2008.927257
https://doi.org/10.1109/TNET.2008.927257


[84] A. N. Kolmogorov and S. V. Fomin. 1970. Introductory Real Analysis. Prentice

Hall.

[85] Teemu Koponen, Keith Amidon, Peter Balland, Martín Casado, Anupam Chanda,

Bryan Fulton, Jesse Gross Igor Ganichev, Natasha Gude, Paul Ingram, Ethan

Jackson, Andrew Lambeth, Romain Lenglet, Shih-Hao Li, Amar Padmanabhan,

Justin Pettit, Ben Pfaff, , Rajiv Ramanathan, Scott Shenker, Alan Shieh, Jeremy

Stribling, Pankaj Thakkar, Dan Wendlandt, Alexander Yip, and Ronghua Zhang.

2014. Network Virtualization in Multi-tenant Datacenters. In NSDI.

[86] S. Rao Kosaraju. 1973. Analysis of structured programs. In Proc. 5th ACM Symp.

Theory of Computing (STOC’73). ACM, New York, NY, USA, 240–252. https:

//doi.org/10.1145/800125.804055

[87] Dexter Kozen. 1981. Semantics of probabilistic programs. J. Comput. Syst. Sci. 22

(1981), 328–350.

[88] Dexter Kozen. 1985. A probabilistic PDL. J. Comput. Syst. Sci. 30, 2 (April 1985),

162–178.

[89] Dexter Kozen. 1996. Kleene algebra with tests and commutativity conditions. In

Proc. Second Int. Workshop Tools and Algorithms for the Construction and Analysis

of Systems (TACAS’96) (Lecture Notes in Computer Science), T. Margaria and

B. Steffen (Eds.), Vol. 1055. Springer-Verlag, Passau, Germany, 14–33.

[90] Dexter Kozen. 1997. Kleene algebra with tests. ACM TOPLAS 19, 3 (May 1997),

427–443. https://doi.org/10.1145/256167.256195

[91] Dexter Kozen. 1997. Kleene algebra with tests. ACM Transactions on Programming

Languages and Systems (TOPLAS) 19, 3 (May 1997), 427–443. https://doi.

org/10.1145/256167.256195

211

https://doi.org/10.1145/800125.804055
https://doi.org/10.1145/800125.804055
https://doi.org/10.1145/256167.256195
https://doi.org/10.1145/256167.256195
https://doi.org/10.1145/256167.256195


[92] Dexter Kozen. 2003. Automata on Guarded Strings and Applications. Matématica

Contemporânea 24 (2003), 117–139.

[93] Dexter Kozen. 2008. Nonlocal Flow of Control and Kleene Algebra with Tests. In

Proc. 23rd IEEE Symp. Logic in Computer Science (LICS’08) (Pittsburgh). 105–117.

[94] Dexter Kozen, Radu Mardare, and Prakash Panangaden. 2013. Strong Com-

pleteness for Markovian Logics. In MFCS. 655–666. https://doi.org/10.1007/

978-3-642-40313-2_58

[95] Dexter Kozen and Maria-Cristina Patron. 2000. Certification of compiler op-

timizations using Kleene algebra with tests. In Proc. 1st Int. Conf. Computa-

tional Logic (CL2000) (London) (Lecture Notes in Artificial Intelligence), John

Lloyd, Veronica Dahl, Ulrich Furbach, Manfred Kerber, Kung-Kiu Lau, Catuscia

Palamidessi, Luis Moniz Pereira, Yehoshua Sagiv, and Peter J. Stuckey (Eds.),

Vol. 1861. Springer-Verlag, London, 568–582.

[96] Dexter Kozen and Frederick Smith. 1996. Kleene algebra with tests: Completeness

and decidability. In Proc. 10th Int. Workshop Computer Science Logic (CSL’96)

(Lecture Notes in Computer Science), D. van Dalen and M. Bezem (Eds.), Vol. 1258.

Springer-Verlag, Utrecht, The Netherlands, 244–259.

[97] Dexter Kozen and Jerzy Tiuryn. 1990. Logics of Programs. In Handbook of Theo-

retical Computer Science, J. van Leeuwen (Ed.). Vol. B. North Holland, Amsterdam,

789–840.

[98] Dexter Kozen and Wei-Lung (Dustin) Tseng. 2008. The Böhm-Jacopini Theorem is

False, Propositionally. In Proc. 9th Int. Conf. Mathematics of Program Construction

(MPC’08) (Lecture Notes in Computer Science), P. Audebaud and C. Paulin-Mohring

(Eds.), Vol. 5133. Springer, 177–192.

212

https://doi.org/10.1007/978-3-642-40313-2_58
https://doi.org/10.1007/978-3-642-40313-2_58


[99] Praveen Kumar, Yang Yuan, Chris Yu, Nate Foster, Robert Kleinberg, Petr Lapukhov,

Chiun Lin Lim, and Robert Soulé. 2018. Semi-Oblivious Traffic Engineering: The

Road Not Taken. In USENIX NSDI.

[100] M. Kwiatkowska, G. Norman, and D. Parker. 2011. PRISM 4.0: Verification of

Probabilistic Real-time Systems. In Proc. 23rd International Conference on Computer

Aided Verification (CAV’11) (LNCS), G. Gopalakrishnan and S. Qadeer (Eds.),

Vol. 6806. Springer, 585–591. https://doi.org/10.1007/978-3-642-22110-1_

47

[101] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. 2011. PRISM 4.0:

Verification of Probabilistic Real-Time Systems. In CAV. 585–591. https://doi.

org/10.1007/978-3-642-22110-1_47

[102] Kim G. Larsen, Radu Mardare, and Prakash Panangaden. 2012. Taking it to the

limit: Approximate reasoning for Markov Processes. In MFCS. https://doi.org/

10.1007/978-3-642-32589-2_59

[103] Alex X. Liu, Fei Chen, JeeHyun Hwang, and Tao Xie. 2008. XEngine: A Fast

and Scalable XACML Policy Evaluation Engine. In International Conference on

Measurement and Modeling of Computer Systems (SIGMETRICS).

[104] Alex X. Liu, Chad R. Meiners, and Eric Torng. 2010. TCAM Razor: A systematic

approach towards minimizing packet classifiers in TCAMs. TON 18, 2 (April

2010), 490–500.

[105] Jed Liu, William Hallahan, Cole Schlesinger, Milad Sharif, Jeongkeun Lee, Robert

Soulé, Han Wang, Calin Cascaval, Nick McKeown, and Nate Foster. 2018. p4v:

Practical Verification for Programmable Data Planes. In SIGCOMM. 490–503.

213

https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-32589-2_59
https://doi.org/10.1007/978-3-642-32589-2_59


[106] Vincent Liu, Daniel Halperin, Arvind Krishnamurthy, and Thomas E Anderson.

2013. F10: A Fault-Tolerant Engineered Network. In USENIX NSDI. 399–412.

[107] D.C. Luckham, D.M.R. Park, and M.S. Paterson. 1970. On formalised computer

programs. J. Comput. System Sci. 4, 3 (1970), 220–249. https://doi.org/10.

1016/S0022-0000(70)80022-8

[108] Haohui Mai, Ahmed Khurshid, Rachit Agarwal, Matthew Caesar, P. Brighten

Godfrey, and Samuel Talmadge King. 2011. Debugging the Data Plane with

Anteater. In ACM SIGCOMM. 290–301.

[109] Radu Mardare, Prakash Panangaden, and Gordon Plotkin. 2016. Quantitative

Algebraic Reasoning. In LICS. https://doi.org/10.1145/2933575.2934518

[110] Jedidiah McClurg, Hossein Hojjat, Nate Foster, and Pavol Cerny. 2016. Event-

Driven Network Programming. In PLDI. https://doi.org/10.1145/2908080.

2908097

[111] Annabelle McIver and Carroll Morgan. 2004. Abstraction, Refinement And Proof

For Probabilistic Systems. Springer.

[112] A. K. McIver, E. Cohen, C. Morgan, and C. Gonzalia. 2008. Using Probabilistic

Kleene Algebra pKA for Protocol Verification. J. Logic and Algebraic Programming

76, 1 (2008), 90–111. https://doi.org/10.1016/j.jlap.2007.10.005

[113] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson,

Jennifer Rexford, Scott Shenker, and Jonathan Turner. 2008. OpenFlow: Enabling

Innovation in Campus Networks. SIGCOMM CCR 38, 2 (2008), 69–74.

[114] M.W. Mislove. 2006. On Combining Probability and Nondeterminism. Electronic

Notes in Theoretical Computer Science 162 (2006), 261 – 265. https://doi.

214

https://doi.org/10.1016/S0022-0000(70)80022-8
https://doi.org/10.1016/S0022-0000(70)80022-8
https://doi.org/10.1145/2933575.2934518
https://doi.org/10.1145/2908080.2908097
https://doi.org/10.1145/2908080.2908097
https://doi.org/10.1016/j.jlap.2007.10.005
https://doi.org/10.1016/j.entcs.2005.12.113
https://doi.org/10.1016/j.entcs.2005.12.113


org/10.1016/j.entcs.2005.12.113 Proceedings of the Workshop: Essays on

Algebraic Process Calculi (APC 25).

[115] Christopher Monsanto, Nate Foster, Rob Harrison, and David Walker. 2012. A

Compiler and Run-time System for Network Programming Languages. In POPL.

[116] Christopher Monsanto, Joshua Reich, Nate Foster, Jennifer Rexford, and David

Walker. 2013. Composing Software-Defined Networks. In NSDI.

[117] Carroll Morgan, Annabelle McIver, and Karen Seidel. 1996. Probabilistic Predicate

Transformers. ACM TOPLAS 18, 3 (May 1996), 325–353. https://doi.org/10.

1145/229542.229547

[118] Paul H. Morris, Ronald A. Gray, and Robert E. Filman. 1997. GOTO Removal

Based on Regular Expressions. J. Software Maintenance: Research and Practice 9,

1 (1997), 47–66. https://doi.org/DOI:10.1002/(SICI)1096-908X(199701)9:

1<47::AID-SMR142>3.0.CO;2-V

[119] Greg Nelson and Derek C. Oppen. 1979. Simplification by Cooperating Decision

Procedures. ACM Trans. Program. Lang. Syst. 1, 2 (1979), 245–257. https:

//doi.org/10.1145/357073.357079

[120] Tim Nelson, Andrew D. Ferguson, Michael J. G. Scheer, and Shriram Krishna-

murthi. 2014. Tierless Programming and Reasoning for Software-Defined Net-

works. In NSDI.

[121] Barefoot Networks. 2019. Barefoot Networks. Retrieved September 6, 2019 from

https://barefootnetworks.com/

[122] Barefoot Networks. 2019. Tofino - World’s fastest P4-programmable Ethernet

switch ASICs. Retrieved August 20, 2019 from https://www.barefootnetworks.

com/products/brief-tofino/

215

https://doi.org/10.1016/j.entcs.2005.12.113
https://doi.org/10.1016/j.entcs.2005.12.113
https://doi.org/10.1145/229542.229547
https://doi.org/10.1145/229542.229547
https://doi.org/DOI: 10.1002/(SICI)1096-908X(199701)9:1<47::AID-SMR142>3.0.CO;2-V
https://doi.org/DOI: 10.1002/(SICI)1096-908X(199701)9:1<47::AID-SMR142>3.0.CO;2-V
https://doi.org/10.1145/357073.357079
https://doi.org/10.1145/357073.357079
https://barefootnetworks.com/
https://www.barefootnetworks.com/products/brief-tofino/
https://www.barefootnetworks.com/products/brief-tofino/


[123] Forward Networks. 2019. Forward Networks. Retrieved September 6, 2019 from

https://www.forwardnetworks.com/

[124] Forward Networks. 2019. Veriflow. Retrieved September 6, 2019 from https:

//www.veriflow.net/

[125] Mogens Nielsen, Gordon D. Plotkin, and Glynn Winskel. 1979. Petri Nets, Event

Structures and Domains. In Semantics of Concurrent Computation. 266–284.

https://doi.org/10.1007/BFb0022474

[126] Maciej Olejnik, Herbert Wiklicky, and Mahdi Cheraghchi. 2016. Prob-

abilistic Programming and Discrete Time Markov Chains. http:

//www.imperial.ac.uk/media/imperial-college/faculty-of-engineering/

computing/public/MaciejOlejnik.pdf

[127] G. Oulsnam. 1982. Unraveling unstructured programs. Comput. J. 25, 3 (1982),

379–387.

[128] Prakash Panangaden. 1998. Probabilistic Relations. In PROBMIV. 59–74.

[129] Prakash Panangaden. 2009. Labelled Markov Processes. Imperial College Press.

https://doi.org/10.1142/9781848162891

[130] Sungwoo Park, Frank Pfenning, and Sebastian Thrun. 2008. A Probabilistic

Language Based on Sampling Functions. ACM TOPLAS 31, 1, Article 4 (December

2008), 46 pages. https://doi.org/10.1145/1452044.1452048

[131] M.S. Paterson and C.E. Hewitt. 1970. Comparative schematology. In Record of

Project MAC Conference on Concurrent Systems and Parallel Computation. ACM,

New York, 119–127.

[132] A. Paz. 1971. Introduction to Probabilistic Automata. Academic Press.

216

https://www.forwardnetworks.com/
https://www.veriflow.net/
https://www.veriflow.net/
https://doi.org/10.1007/BFb0022474
http://www.imperial.ac.uk/media/imperial-college/faculty-of-engineering/computing/public/MaciejOlejnik.pdf
http://www.imperial.ac.uk/media/imperial-college/faculty-of-engineering/computing/public/MaciejOlejnik.pdf
http://www.imperial.ac.uk/media/imperial-college/faculty-of-engineering/computing/public/MaciejOlejnik.pdf
https://doi.org/10.1142/9781848162891
https://doi.org/10.1145/1452044.1452048


[133] Jonathan Perry, Amy Ousterhout, Hari Balakrishnan, Devavrat Shah, and Hans

Fugal. 2014. Fastpass: A Centralized “Zero-Queue” Datacenter Network. In

SIGCOMM. https://doi.org/10.1145/2619239.2626309

[134] W. Peterson, T. Kasami, and N. Tokura. 1973. On the Capabilities of while, repeat,

and exit Statements. Comm. Assoc. Comput. Mach. 16, 8 (1973), 503–512.

[135] G. D. Plotkin. 1982. Probabilistic powerdomains. In CAAP. 271–287.

[136] Gordon D. Plotkin, Nikolaj Bjørner, Nuno P. Lopes, Andrey Rybalchenko, and

George Varghese. 2016. Scaling network verification using symmetry and surgery.

In POPL. 69–83. https://doi.org/10.1145/2837614.2837657

[137] Damien Pous. 2015. Symbolic Algorithms for Language Equivalence and Kleene

Algebra with Tests. In POPL.

[138] Damien Pous. 2015. Symbolic Algorithms for Language Equivalence and Kleene

Algebra with Tests. In Proc. Principles of Programming Languages (POPL). ACM,

New York, 357–368. https://doi.org/10.1145/2676726.2677007

[139] ONOS Project. 2014. Intent Framework. Available at http://onos.wpengine.

com/wp-content/uploads/2014/11/ONOS-Intent-Framework.pdf.

[140] Open Daylight Project. 2014. Group Policy. Available at https://wiki.

opendaylight.org/view/Group_Policy:Main.

[141] Harald Räcke. 2008. Optimal hierarchical decompositions for congestion mini-

mization in networks. In STOC. 255–264.

[142] Norman Ramsey and Avi Pfeffer. 2002. Stochastic lambda calculus and monads of

probability distributions. In POPL. 154–165. https://doi.org/10.1145/565816.

503288

217

https://doi.org/10.1145/2619239.2626309
https://doi.org/10.1145/2837614.2837657
https://doi.org/10.1145/2676726.2677007
http://onos.wpengine.com/wp-content/uploads/2014/11/ONOS-Intent-Framework.pdf
http://onos.wpengine.com/wp-content/uploads/2014/11/ONOS-Intent-Framework.pdf
https://wiki.opendaylight.org/view/Group_Policy:Main
https://wiki.opendaylight.org/view/Group_Policy:Main
https://doi.org/10.1145/565816.503288
https://doi.org/10.1145/565816.503288


[143] L. Ramshaw. 1988. Eliminating goto’s while preserving program structure. Journal

of the ACM 35, 4 (1988), 893–920.

[144] L. H. Ramshaw. 1979. Formalizing the Analysis of Algorithms. Ph.D. Dissertation.

Stanford University.

[145] M. M. Rao. 1987. Measure Theory and Integration. Wiley-Interscience.

[146] Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole Schlesinger, and David Walker.

2012. Abstractions for Network Update. In SIGCOMM. 323–334. https://doi.

org/10.1145/2377677.2377748

[147] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C. Snoeren.

2015. Inside the Social Network’s (Datacenter) Network. In ACM SIGCOMM.

123–137.

[148] Daniel M. Roy. 2011. Computability, inference and modeling in probabilistic pro-

gramming. Ph.D. Dissertation. Massachusetts Institute of Technology.

[149] Jan J. M. M. Rutten. 2000. Universal coalgebra: a theory of systems. Theor. Comput.

Sci. 249, 1 (2000), 3–80. https://doi.org/10.1016/S0304-3975(00)00056-6

[150] N. Saheb-Djahromi. 1978. Probabilistic LCF. In MFCS. 442–451. https://doi.

org/10.1007/3-540-08921-7_92

[151] N. Saheb-Djahromi. 1980. CPOs of measures for nondeterminism. Theoretical

Computer Science 12 (1980), 19–37. https://doi.org/10.1016/0304-3975(80)

90003-1

[152] Arto Salomaa. 1966. Two complete axiom systems for the algebra of regular

events. J. Assoc. Comput. Mach. 13, 1 (January 1966), 158–169.

218

https://doi.org/10.1145/2377677.2377748
https://doi.org/10.1145/2377677.2377748
https://doi.org/10.1016/S0304-3975(00)00056-6
https://doi.org/10.1007/3-540-08921-7_92
https://doi.org/10.1007/3-540-08921-7_92
https://doi.org/10.1016/0304-3975(80)90003-1
https://doi.org/10.1016/0304-3975(80)90003-1


[153] Sriram Sankaranarayanan, Aleksandar Chakarov, and Sumit Gulwani. 2013. Static

analysis for probabilistic programs: inferring whole program properties from

finitely many paths. In PLDI. 447–458. https://doi.org/10.1145/2499370.

2462179

[154] Cole Schlesinger, Michael Greenberg, and David Walker. 2014. Concurrent Net-

Core: From Policies to Pipelines. In ICFP.

[155] D. S. Scott. 1972. Continuous lattices. In Toposes, Algebraic Geometry and Logic.

Springer, 97–136. https://doi.org/10.1007/BFb0073967

[156] R. Segala. 2006. Probability and nondeterminism in operational models of

concurrency. In CONCUR. 64–78. https://doi.org/10.1007/11817949_5

[157] R. Segala and N. A. Lynch. 1995. Probabilistic simulations for probabilistic

processes. In NJC. 250–273.

[158] Vyas Sekar, Michael K. Reiter, Walter Willinger, Hui Zhang, Ramana Rao Kom-

pella, and David G. Andersen. 2008. CSAMP: A System for Network-wide Flow

Monitoring. In USENIX NSDI. 233–246.

[159] Micha Sharir, Amir Pnueli, and Sergiu Hart. 1984. Verification of probabilistic

programs. SIAM J. Comput. 13, 2 (1984), 292–314. https://doi.org/10.1137/

0213021

[160] J.C. Shepherdson and H.E. Sturgis. 1963. Computability of Recursive Functions.

Journal of the ACM (JACM) 10, 2 (1963), 217–255. https://doi.org/10.1145/

321160.321170

[161] Alan Shieh, Srikanth Kandula, Albert G Greenberg, and Changhoon Kim. 2010.

Seawall: Performance Isolation for Cloud Datacenter Networks.. In HotCloud.

219

https://doi.org/10.1145/2499370.2462179
https://doi.org/10.1145/2499370.2462179
https://doi.org/10.1007/BFb0073967
https://doi.org/10.1007/11817949_5
https://doi.org/10.1137/0213021
https://doi.org/10.1137/0213021
https://doi.org/10.1145/321160.321170
https://doi.org/10.1145/321160.321170


[162] Alexandra Silva. 2010. Kleene Coalgebra. Ph.D. Dissertation. Radboud University.

[163] Rachee Singh, Manya Ghobadi, Klaus-Tycho Foerster, Mark Filer, and Phillipa Gill.

2018. RADWAN: Rate Adaptive Wide Area Network. In ACM SIGCOMM.

[164] Steffen Smolka, Spiros Eliopoulos, Nate Foster, and Arjun Guha. 2015. A Fast

Compiler for NetKAT. In ICFP. https://doi.org/10.1145/2784731.2784761

[165] Steffen Smolka, Praveen Kumar, Nate Foster, Dexter Kozen, and Alexandra Silva.

2017. Cantor Meets Scott: Semantic Foundations for Probabilistic Networks. In

POPL 2017. https://doi.org/10.1145/3009837.3009843

[166] Martin Suchara, Dahai Xu, Robert Doverspike, David Johnson, and Jennifer Rex-

ford. 2011. Network architecture for joint failure recovery and traffic engineer-

ing. ACM SIGMETRICS (2011), 97–108. https://doi.org/10.1145/2007116.

2007128

[167] Robert Endre Tarjan. 1975. Efficiency of a Good But Not Linear Set Union

Algorithm. J. ACM 22, 2 (1975), 215–225. https://doi.org/10.1145/321879.

321884

[168] David E. Taylor and Jonathan S. Turner. 2007. ClassBench: A Packet Classification

Benchmark. TON 15 (June 2007), 499–511. Issue 3.

[169] Ken Thompson. 1968. Regular Expression Search Algorithm. Commun. ACM 11,

6 (1968), 419–422. https://doi.org/10.1145/363347.363387

[170] R. Tix, K. Keimel, and G. Plotkin. 2009. Semantic domains for combining prob-

ability and nondeterminism. ENTCS 222 (2009), 3–99. https://doi.org/10.

1016/j.entcs.2009.01.002

220

https://doi.org/10.1145/2784731.2784761
https://doi.org/10.1145/3009837.3009843
https://doi.org/10.1145/2007116.2007128
https://doi.org/10.1145/2007116.2007128
https://doi.org/10.1145/321879.321884
https://doi.org/10.1145/321879.321884
https://doi.org/10.1145/363347.363387
https://doi.org/10.1016/j.entcs.2009.01.002
https://doi.org/10.1016/j.entcs.2009.01.002


[171] L. Valiant. 1982. A Scheme for Fast Parallel Communication. SIAM J. Comput. 11,

2 (1982), 350–361.

[172] Daniele Varacca, Hagen Völzer, and Glynn Winskel. 2006. Probabilistic event

structures and domains. TCS 358, 2-3 (2006), 173–199. https://doi.org/10.

1016/j.tcs.2006.01.015

[173] D. Varacca and G. Winskel. 2006. Distributing probability over non-determinism.

Mathematical Structures in Computer Science 16, 1 (2006), 87–113. https:

//doi.org/10.1017/S0960129505005074

[174] Andreas Voellmy, Junchang Wang, Y. Richard Yang, Bryan Ford, and Paul Hudak.

2013. Maple: Simplifying SDN Programming Using Algorithmic Policies. In

SIGCOMM. https://doi.org/10.1145/2486001.2486030

[175] Di Wang, Jan Hoffmann, and Thomas Reps. 2018. PMAF: An Algebraic Framework

for Static Analysis of Probabilistic Programs. In POPL 2018. https://www.cs.

cmu.edu/~janh/papers/WangHR17.pdf

[176] M. Williams and H. Ossher. 1978. Conversion of unstructured flow diagrams into

structured form. Comput. J. 21, 2 (1978), 161–167.

[177] Geoffrey G. Xie, Jibin Zhan, David A. Maltz, Hui Zhang, Albert G. Greenberg, Gísli

Hjálmtýsson, and Jennifer Rexford. 2005. On static reachability analysis of IP

networks. In INFOCOM.

[178] Hongkun Yang and Simon S. Lam. 2016. Real-time Verification of Network

Properties Using Atomic Predicates. IEEE/ACM ToN 24, 2 (April 2016), 887–900.

[179] Zhiyong Zhang, Ovidiu Mara, and Katerina Argyraki. 2014. Network Neutrality

Inference. In ACM SIGCOMM. 63–74.

221

https://doi.org/10.1016/j.tcs.2006.01.015
https://doi.org/10.1016/j.tcs.2006.01.015
https://doi.org/10.1017/S0960129505005074
https://doi.org/10.1017/S0960129505005074
https://doi.org/10.1145/2486001.2486030
https://www.cs.cmu.edu/~janh/papers/WangHR17.pdf
https://www.cs.cmu.edu/~janh/papers/WangHR17.pdf


[180] Rui Zhang-Shen and Nick McKeown. 2005. Designing a Predictable Internet

Backbone with Valiant Load-Balancing. In International Workshop on Quality of

Service (IWQoS). 178–192. https://doi.org/10.1007/11499169_15

222

https://doi.org/10.1007/11499169_15


Part V

Appendix

223





Chapter A

Appendix to Chapter 3

A.1 (M(2H),⊑) is not a Semilattice

Despite the fact that (M(2H),⊑) is a directed set (Lemma 3.6.2), it is not a semilattice.

Here is a counterexample.

Let b = {π, σ, τ}, where π, σ, τ are distinct packets. Let

µ1 =
1
2
δ{π} +

1
2
δ{σ} µ2 =

1
2
δ{σ} +

1
2
δ{τ}

µ3 =
1
2
δ{τ} +

1
2
δ{π}.

The measures µ1, µ2, µ3 would be the output measures of the programs π!⊕ σ!, σ!⊕ τ !,

τ !⊕ π!, respectively.

We claim that µ1 ⊔ µ2 does not exist. To see this, define

ν1 =
1
2
δ{τ} +

1
2
δ{π,σ} ν2 =

1
2
δ{π} +

1
2
δ{σ,τ}

ν3 =
1
2
δ{σ} +

1
2
δ{τ,π}.

All νi are ⊑-upper bounds for all µj. (In fact, any convex combination rν1 + sν2 + tν3 for

0 ≤ r, s, t and r+s+ t = 1 is an upper bound for any convex combination uµ1+vµ2+wµ3

for 0 ≤ u, v, w and u+ v + w = 1.) But we show by contradiction that there cannot exist

a measure that is both ⊑-above µ1 and µ2 and ⊑-below ν1 and ν2. Suppose ρ was such a

225



measure. Since ρ ⊑ ν1 and ρ ⊑ ν2, we have

ρ(Bστ ) ≤ ν1(Bστ ) = 0 ρ(Bτπ) ≤ ν1(Bτπ) = 0

ρ(Bπσ) ≤ ν2(Bπσ) = 0.

Since µ1 ⊑ ρ and µ2 ⊑ ρ, we have

ρ(Bπ) ≥ µ1(Bπ) =
1
2

ρ(Bσ) ≥ µ1(Bσ) =
1
2

ρ(Bτ ) ≥ µ2(Bτ ) =
1
2
.

But then

ρ(Aπb) = ρ(Bπ)− ρ(Bπσ ∪Bτπ) ≥ 1
2

ρ(Aσb) = ρ(Bσ)− ρ(Bστ ∪Bπσ) ≥ 1
2

ρ(Aτb) = ρ(Bτ )− ρ(Bτπ ∪Bστ ) ≥ 1
2
,

which is impossible, because ρ would have total weight at least 3
2
.

A.2 Non-Algebraicity

Here is a counterexample to the conjecture that the elements continuous DCPO of

continuous kernels is algebraic with finite elements b · P · d. Let σ, τ be packets and

let σ! and τ ! be the programs that set the current packet to σ or τ , respectively. For

r ∈ [1
2
, 1], let Pr = (σ! ⊕r τ !) & (τ ! ⊕r σ!). On any nonempty input, Pr produces {σ} with

probability r(1−r), {τ} with probability r(1−r), and {σ, τ} with probability r2+(1−r)2.

In particular, P1 produces {σ, τ} with probability 1. The kernels Pr for 1/2 ≤ r < 1 form

a directed set whose supremum is P1, yet {σ} · P1 · {σ, τ} is not ⊑-bounded by any Pr for

r < 1, therefore the up-closure of {σ} · P1 · {σ, τ} is not an open set.

226



A.3 Cantor Meets Scott

This appendix contains proofs omitted from Section 3.5.

Proof of Lemma 3.5.5. For any a ⊆ b,

Xa = µ(Ba) =
∑
a⊆c⊆b

µ(Acb)

=
∑
c

[a ⊆ c] · [c ⊆ b] · µ(Acb)

=
∑
c

E[b]ac · Yc = (E[b] · Y )a.

Proof of Theorem 3.5.6. Given a probability measure µ, certainly (i) and (ii) hold of the

matrices M and N formed from µ by the rule (3.6). For (iii), we calculate:

(E−1ME)ab =
∑
c,d

E−1
ac McdEdb =

∑
c,d

E−1
ac McdEdb

=
∑
c,d

[a ⊆ c] · (−1)|c−a| · [c = d] · µ(Mcd) · [d ⊆ b]

=
∑
a⊆c⊆b

(−1)|c−a| · µ(Bc) = µ(Aab) = Nab.

That the correspondence is one-to-one is immediate from Theorem 3.5.4.

A.4 A DCPO on Markov Kernels

This appendix contains proofs omitted from Section 3.6.

Proof of Theorem 3.6.1. We prove the theorem for our concrete instance (2H,B). The

relation ⊑ is a partial order. Reflexivity and transitivity are clear, and antisymmetry

follows from Lemma 3.5.3.

227



To show that suprema of directed sets exist, let D be a directed set of measures, and

define

(
⊔
D)(B) := sup

µ∈D
µ(B), B ∈ O.

This is clearly the supremum of D, provided it defines a valid measure.1 To show

this, choose a countable chain µ0 ⊑ µ1 ⊑ · · · in D such that µm ⊑ µn for all m < n

and (
⊔
D)(Bc) − µn(Bc) ≤ 1/n for all c such that |c| ≤ n. Then for all finite c ∈ 2H,

(
⊔
D)(Bc) = supn µn(Bc).

Then
⊔
D is a measure by Theorem 3.5.4 because for all finite b and a ⊆ b,

∑
a⊆c⊆b

(−1)|c−a|(
⊔
D)(Bc) =

∑
a⊆c⊆b

(−1)|c−a| sup
n

µn(Bc)

= lim
n

∑
a⊆c⊆b

(−1)|c−a|µn(Bc)

≥ 0.

To show that δ∅ is ⊑-minimum, observe that for all B ∈ O,

δ∅(B) = [∅ ∈ B] = [B = B∅ = 2H]

as B∅ = 2H is the only up-closed set containing ∅. Thus for all measures µ, δ∅(2H) = 1 =

µ(2H), and for all B ∈ O, B ̸= 2H, δ∅(B) = 0 ≤ µ(B).

Finally, to show that δH is⊑-maximum, observe that every nonempty B ∈ O contains

H because it is up-closed. Therefore, δH is the constant function 1 on O − {∅}, making

it ⊑-maximum.
1This is actually quite subtle. One might be tempted to define

(
⊔
D)(B) := sup

µ∈D
µ(B), B ∈ B

However, this definition would not give a valid probability measure in general. In particular, an increasing
chain of measures does not generally converge to its supremum pointwise. However, it does converge
pointwise on O.

228



Proof of Lemma 3.6.2. For any up-closed measurable set B,

µ(B) = µ(B) · ν(2H) = (µ× ν)(B × 2H)

= (µ× ν)({(b, c) | b ∈ B})

≤ (µ× ν)({(b, c) | b ∪ c ∈ B}) = (µ& ν)(B).

and similarly for ν.

Proof of Lemma 3.6.3. To show that (i), (ii), and (iv) are equivalent,

∀a ∈ 2H ∀B ∈ O P (a,B) ≤ Q(a,B)

⇔ ∀a ∈ 2H (∀B ∈ O P (a,B) ≤ Q(a,B))

⇔ ∀a ∈ 2H P (a,−) ⊑ Q(a,−)

⇔ ∀a ∈ 2H (curryP )(a) ⊑ (curryQ)(a)

⇔ curryP ⊑ curryQ.

To show that (i) and (iii) are equivalent,

∀a ∈ 2H ∀B ∈ O P (a,B) ≤ Q(a,B)

⇔ ∀B ∈ O (∀a ∈ 2H P (a,B) ≤ Q(a,B))

⇔ ∀B ∈ O P (−, B) ⊑ Q(−, B).

Proof of Theorem 3.6.4. We must show that the supremum of any directed set of con-

tinuous Markov kernels is a continuous Markov kernel. In general, the supremum of a

directed set of continuous functions between DCPOs is continuous. Given a directed setD

of continuous kernels, we apply this to the directed set {curryP : 2H →M(2H) | P ∈ D}

to derive that
⊔

P∈D curryP is continuous, then use the fact that curry is continuous to

infer that
⊔

P∈D curryP = curry
⊔
D, therefore curry

⊔
D is continuous. This says that the

function P : 2H × B → [0, 1] is continuous in its first argument.

229



We must still argue that the supremum
⊔
D is a Markov kernel, that is, a measurable

function in its first argument and a probability measure in its second argument. The first

statement follows from the fact that any continuous function is measurable with respect

to the Borel sets generated by the topologies of the two spaces. For the second statement,

we appeal to Theorem 3.6.1 and the continuity of curry:

(curry
⊔
D)(a) = (

⊔
P∈D curryP )(a) =

⊔
P∈D(curryP )(a),

which is a supremum of a directed set of probability measures, therefore by Theorem

3.6.1 is itself a probability measure.

To show that it is a continuous DCPO with basis of the indicated form, we note that

for any a ∈ 2H and B ∈ O,

(b · P · d)(a,B) = P (a ∩ b, {c | c ∩ d ∈ B}). (A.1)

Every element of the space is the supremum of a directed set of such elements. Given a

continuous kernel P , consider the directed set D of all elements b · P · d for b, d finite.

Then for any a ∈ 2H and B ∈ O,

(
⊔
D)(a,B) = sup

b,d∈℘ω(H)

P (a ∩ b, {c | c ∩ d ∈ B}) (A.2)

= sup
d∈℘ω(H)

P (a, {c | c ∩ d ∈ B}) (A.3)

= P (a,B), (A.4)

the inference (A.2) from (A.1), the inference (A.3) from the fact that P is continuous

in its first argument, and the inference (A.3) from the fact that the sets {c | c ∩ d ∈ B}

for d ∈ ℘ω(H) form a directed set of Scott-open sets whose union is B and that P is a

measure in its second argument.

230



A.5 Continuity of Kernels and Program Operators and a Least-Fixpoint

Characterization of Iteration

This appendix contains lemmas and proofs omitted from Section 3.7.

A.5.1 Products and Integration

This section develops some properties of products and integration needed for from the

point of view of Scott topology.

As pointed out by Jones [71, §3.6], the product σ-algebra of the Borel sets of two

topological spaces X, Y is in general not the same as the Borel sets of the topological

product X × Y , although this property does hold for the Cantor space, as its basic open

sets are clopen. More importantly, as also observed in [71, §3.6], the Scott topology on

the product of DCPOs with the componentwise order is not necessarily the same as the

product topology. However, in our case, the two topologies coincide.

Theorem A.5.1. Let Dα, α < κ, be a collection of algebraic DCPOs with Fα the finite

elements of Dα. Then the product
∏

α<κDα with the componentwise order is an algebraic

DCPO with finite elements

F = {c ∈
∏

α Fα | πα(c) = ⊥ for all but finitely many α}.

Proof. The projections πβ :
∏

α Dα → Dβ are easily shown to be continuous with respect

to the componentwise order. For any d ∈
∏

α<κDα, the set {d}↓ ∩ F is directed, and

d =
⊔
({d}↓ ∩ F ): for any α, the set πα({d}↓ ∩ F ) = {πα(d)}↓ ∩ Fα is directed, thus

πα(d) =
⊔

({πα(d)}↓ ∩ Fα) =
⊔

(πα({d}↓ ∩ F ))

= πα(
⊔

({d}↓ ∩ F )),

and as α was arbitrary, d =
⊔
({d}↓ ∩ F ).

231



It remains to show that {c}↑ =
∏

α<κ{πα(c)}↑ is open for c ∈ F . Let A be a directed

set with
⊔

A ∈ {c}↑. For each α, {πα(a) | a ∈ A} is directed, and

⊔
a∈A

πα(a) = πα(
⊔

A) ∈ πα({c}↑) = {πα(c)}↑,

so there exists aα ∈ A such that πα(aα) ∈ {πα(c)}↑. Since A is directed, there is a single

a ∈ A that majorizes the finitely many aα such that πα(c) ̸= ⊥. Then πα(a) ∈ {πα(c)}↑

for all α, thus a ∈ {c}↑.

Corollary A.5.2. The Scott topology on a product of algebraic DCPOs with respect to the

componentwise order coincides with the product topology induced by the Scott topology on

each component.

Proof. Let
∏

α<κDα be a product of algebraic DCPOs with O0 the product topology

and O1 the Scott topology. As noted in the proof of Theorem A.5.1, the projections

πβ :
∏

α Dα → Dβ are continuous with respect to O1. By definition, O0 is the weakest

topology on the product such that the projections are continuous, so O0 ⊆ O1.

For the reverse inclusion, we use the observation that the sets {c}↑ for finite elements

c ∈ F as defined in Theorem A.5.1 form a base for the topology O1. These sets are also

open in O0, since they are finite intersections of sets of the form π−1
α ({πα(c)}↑), and

{πα(c)}↑ is open in Dα since πα(c) ∈ Fα. As O1 is the smallest topology containing its

basic open sets, O1 ⊆ O0.

A function g : 2H → R+ is O-simple if it is a finite linear combination of the form∑
A∈F rA1A, where F is a finite subset of O. Let SO denote the set of O-simple functions.

Theorem A.5.3. Let f be a bounded Scott-continuous function f : 2H → R+. Then

sup
g∈SO
g≤f

∫
g dµ =

∫
f dµ = inf

g∈SO
f≤g

∫
g dµ

under Lebesgue integration.

232



Proof. Let ε > 0 and rN = supa∈2H f(a). Let

0 = r0 < r1 < · · · < rN

such that ri+1 − ri < ε, 0 ≤ i ≤ N − 1, and set

Ai = {a | f(a) > ri} = f−1((ri,∞)) ∈ O, 0 ≤ i ≤ N.

Then Ai+1 ⊆ Ai and

Ai − Ai+1 = {a | ri < f(a) ≤ ri+1} = f−1((ri, ri+1]).

Let

f• =
N−1∑
i=0

ri1Ai−Ai+1
f • =

N−1∑
i=0

ri+11Ai−Ai+1
.

For a ∈ Ai − Ai+1,

f•(a) =
N−1∑
i=0

ri1Ai−Ai+1
(a) = ri < f(a)

≤ ri+1 =
N−1∑
i=0

ri+11Ai−Ai+1
(a) = f •(a),

and as a was arbitrary, f• ≤ f ≤ f • pointwise. Thus∫
f• dµ ≤

∫
f dµ ≤

∫
f • dµ.

Moreover, ∫
f • dµ−

∫
f• dµ =

N−1∑
i=0

ri+1µ(Ai − Ai+1)

−
N−1∑
i=0

riµ(Ai − Ai+1)

=
N−1∑
i=0

(ri+1 − ri)µ(Ai − Ai+1)

< ε ·
N−1∑
i=0

µ(Ai − Ai+1) = ε · µ(2H) = ε,

233



so the integral is approximated arbitrarily closely from above and below by the f • and

f•. Finally, we argue that f• and f • are O-simple. Using the fact that r0 = 0 and AN = ∅

to reindex,

f• =
N−1∑
i=0

ri1Ai−Ai+1
=

N−1∑
i=0

ri1Ai
−

N−1∑
i=0

ri1Ai+1

=
N−1∑
i=0

ri+11Ai+1
−

N−1∑
i=0

ri1Ai+1
=

N−1∑
i=0

(ri+1 − ri)1Ai+1
,

f • =
N−1∑
i=0

ri+11Ai−Ai+1
=

N−1∑
i=0

ri+11Ai
−

N−1∑
i=0

ri+11Ai+1

=
N−1∑
i=0

ri+11Ai
−

N−1∑
i=0

ri1Ai
=

N−1∑
i=0

(ri+1 − ri)1Ai
,

and both functions are O-simple since all Ai are in O.

We can prove a stronger version of Theorem A.5.3 that also works for functions

taking on infinite value. A function g is simple if it is a finite linear combination of

indicator functions of the form g =
∑k

i=1 ri1Ai
, where k ∈ N and the Ai are measurable.

Let S denote the set of all simple functions.

Theorem A.5.4. Let f : 2H → [0,∞] be Scott-continuous and let µ be a probability measure.

Then ∫
f dµ = sup

g∈SO
g≤f

∫
g dµ

Proof. It suffices to show that

sup
g∈S
g≤f

∫
g dµ = sup

g∈SO
g≤f

∫
g dµ (A.5)

since the left side of this equation defines the integral of f . We trivially have

sup
g∈S
g≤f

∫
g dµ ≥ sup

g∈SO
g≤f

∫
g dµ (A.6)

234



because SO ⊆ S. To show the reverse inequality, let g ∈ S with g ≤ f be arbitrary. We

will show that there exists a family of functions gε ∈ SO, ε > 0 with gε ≤ f such that∫
g dµ−

∫
gε dµ ≤ ε. Together with (A.6), this proves (A.5) because it implies that

sup
g∈S
g≤f

∫
g dµ ≤ sup

g∈S
g≤f

sup
ε>0

∫
gε dµ ≤ sup

g∈SO
g≤f

∫
g dµ

Let’s turn to constructing the family of functions gε ∈ SO. Since g is simple, we may

w.l.o.g. assume that it has the form g =
∑k

i=1 ri1Ai
with disjoint Ai ∈ B and r1 < r2 <

· · · < rk. Define

r0 := ε

Bi,ε := f−1((ri − ε,∞]) ∈ O

βi := ri − ri−1

gε :=
k∑

i=1

βi · 1Bi,ε
∈ SO

Then we have gε ≤ f because for all a ∈ 2H

(
k∑

i=1

βi · 1Bi,ε
)(a) =

k∑
i=1

βi · [a ∈ Bi,ε]

=
k∑

i=1

(ri − ri−1) · [f(a) > ri − ε]

= max{ri | 1 ≤ i ≤ k and f(a) > ri − ε} − r0

< f(a)

Moreover, we have that g − gε ≤ ε because

(
k∑

i=1

βi · 1Bi,ε
)(a) = max{ri | 1 ≤ i ≤ k and f(a) > ri − ε} − r0

≥ max{ri | 1 ≤ i ≤ k and f(a) ≥ ri} − ε

≥ max{ri | 1 ≤ i ≤ k and g(a) = ri} − ε

= g(a)− ε

235



Thus it follows that ∫
g dµ−

∫
gε dµ =

∫
(g − gε)dµ ≤

∫
ε dµ = ε

Proof of Theorem 3.7.1. (i) We prove the result first for O-simple functions. If µ ⊑ ν,

then for any O-simple function g =
∑

A rA1A,∫
g dµ =

∫ ∑
A

rA1A dµ =
∑
A

rAµ(A)

≤
∑
A

rAν(A) =

∫ ∑
A

rA1A dν =

∫
g dν.

Thus the map (3.7) is monotone. If D is a directed set of measures with respect to ⊑,

then ∫
g d(
⊔
D) =

∫ ∑
A

rA1A d(
⊔
D) =

∑
A

rA(
⊔
D)(A)

= sup
µ∈D

∑
A

rAµ(A) = sup
µ∈D

∫ ∑
A

rA1A dµ

= sup
µ∈D

∫
g dµ.

Now consider an arbitrary Scott-continuous function f : 2H → [0,∞]. Let SO be the

family of O-simple functions. By Theorem A.5.4, if µ ⊑ ν, we have∫
f dµ = sup

g∈SO
g≤f

∫
g dµ ≤ sup

g∈SO
g≤f

∫
g dν =

∫
f dν,

and if D is a directed set of measures with respect to ⊑, then∫
f d(

⊔
D) = sup

g∈SO
g≤f

∫
g d(
⊔
D) = sup

g∈SO
g≤f

sup
µ∈D

∫
g dµ

= sup
µ∈D

sup
g∈SO
g≤f

∫
g dµ = sup

µ∈D

∫
f dµ.

(ii) This just the monotone convergence theorem for Lebesgue Integration.

236



A.5.2 Continuous Operations on Measures

In this section we show that certain operations on measures are continuous. These

properties will be lifted to kernels as required.

Lemma A.5.5. For any probability measure µ on an algebraic DCPO and open set B, the

value µ(B) is approximated arbitrarily closely from below by µ(C) for compact-open sets C.

Proof. Since the sets {a}↑ for finite a form a base for the topology, and every compact-

open set is a finite union of such sets, the set K(B) of compact-open subsets of B is a

directed set whose union is B. Then

µ(B) = µ(
⋃
K(B)) = sup{µ(C) | C ∈ K(B)}.

Lemma A.5.6. The product operator on measures in algebraic DCPOs is Scott-continuous

in each argument.

Proof. The difficult part of the argument is monotonicity. Once we have that, then for

any B,C ∈ O, we have (µ × ν)(B × C) = µ(B) · ν(C). Thus for any directed set D of

measures,

(
⊔
D × ν)(B × C)

= (
⊔
D)(B) · ν(C) = (sup

µ∈D
µ(B)) · ν(C)

= sup
µ∈D

(µ(B) · ν(C)) = sup
µ∈D

((µ× ν)(B × C))

= (
⊔

µ∈D(µ× ν))(B × C).

By Theorem A.5.1, the sets B × C for B,C ∈ O form a basis for the Scott topology on

the product space 2H × 2H, thus
⊔
D × ν =

⊔
µ∈D(µ× ν).

237



To show monotonicity, we use approximability by compact-open sets (Lemma A.5.5).

We wish to show that if µ1 ⊑ µ2, then µ1 × ν ⊑ µ2 × ν. By Lemma A.5.5, it suffices to

show that

(µ1 × ν)(
⋃
n

Bn × Cn) ≤ (µ2 × ν)(
⋃
n

Bn × Cn),

where the index n ranges over a finite set, and Bn and Cn are open sets of the component

spaces. Consider the collection of all atoms A of the Boolean algebra generated by the

Cn. For each such atom A, let

N(A) = {n | Cn occurs positively in A}.

Then ⋃
n

Bn × Cn =
⋃
A

(
⋃

n∈N(A)

Bn)× A.

The right-hand side is a disjoint union, since the A are pairwise disjoint. Then

(µ1 × ν)(
⋃
n

Bn × Cn) = (µ1 × ν)(
⋃
A

(
⋃

n∈N(A)

Bn)× A)

=
∑
A

(µ1 × ν)((
⋃

n∈N(A)

Bn)× A)

=
∑
A

µ1(
⋃

n∈N(A)

Bn) · ν(A)

≤
∑
A

µ2(
⋃

n∈N(A)

Bn) · ν(A)

= (µ2 × ν)(
⋃
n

Bn × Cn).

Let S and T be measurable spaces and f : S → T a measurable function. For a

measure µ on S, the push-forward measure f∗(µ) is the measure µ ◦ f−1 on T .

Lemma A.5.7. If f : (2H)κ → 2H is Scott-continuous with respect to the subset order, then

the push-forward operator f∗ :M((2H)κ)→M(2H) is Scott-continuous with respect to ⊑.

238



Proof. Let µ, ν ∈ M((2H)κ), µ ⊑ ν. If B ∈ O, then f−1(B) is Scott-open in (2H)κ, so

f∗(µ)(B) = µ(f−1(B)) ≤ ν(f−1(B)) = f∗(ν)(B). As B ∈ O was arbitrary, f∗(µ) ⊑ f∗(ν).

Similarly, if D is any ⊑-directed set inM((2H)κ), then so is {f∗(µ) | µ ∈ D}, and

f∗(
⊔
D)(B) = (

⊔
D)(f−1(B)) = sup

µ∈D
µ(f−1(B))

= sup
µ∈D

f∗(µ)(B) = (
⊔

µ∈Df∗(µ))(B)

for any B ∈ O, thus f∗(
⊔
D) =

⊔
µ∈Df∗(µ).

Lemma A.5.8. Parallel composition of measures (&) is Scott-continuous in each argument.

Proof. By definition, µ & ν = (µ × ν) ·
⋃−1, where

⋃
: 2H × 2H → 2H is the set union

operator. The set union operator is easily shown to be continuous with respect to the

Scott topologies on 2H × 2H and the 2H. By Lemma A.5.7, the push-forward operator

with respect to union is Scott-continuous with respect to ⊑. By Lemma A.5.6, the

product operator is Scott-continuous in each argument with respect to ⊑. The operator

& is the composition of these two Scott continuous operators, therefore is itself Scott-

continuous.

A.5.3 Continuous Kernels

Lemma A.5.9. The deterministic kernel associated with any Scott-continuous function

f : D → E is a continuous kernel.

Proof. Recall from [44] that deterministic kernels are those whose output measures are

Dirac measures (point masses). Any measurable function f : D → E uniquely determines

a deterministic kernel Pf such that Pf (a,−) = δf(a) (or equivalently, P = η ◦ f) and

vice versa (this was shown in [44] for D = E = 2H). We show that if in addition f is

Scott-continuous, then the kernel Pf is continuous.

239



Let f : D → E be Scott-continuous. For any open B, if a ⊑ b, then f(a) ⊑ f(b) since

f is monotone. Since B is up-closed, if f(a) ∈ B, then f(b) ∈ B. Thus

Pf (a,B) = [f(a) ∈ B] ≤ [f(b) ∈ B] = Pf (b, B).

If A ⊆ D is a directed set, then f(
⊔

A) =
⊔

a∈A f(a). Since B is open,
⊔

a∈A f(a) ∈ B iff

there exists a ∈ A such that f(a) ∈ B. Then

Pf (
⊔
A,B) = [f(

⊔
A) ∈ B] = [

⊔
a∈Af(a) ∈ B]

= sup
a∈A

[f(a) ∈ B] = sup
a∈A

Pf (a,B).

Lemma A.5.10. All atomic ProbNetKAT programs (including predicates) denote determin-

istic and Scott-continuous kernels.

Proof. By Lemma 3.4.2, all atomic programs denote kernels of the form a 7→ η({f(h) |

h ∈ a}), where f is a partial function H ⇀ H. Hence they are deterministic. Using

Lemma A.5.9, we see that they are also Scott-continuous:

• If a ⊆ b, then {f(h) | h ∈ a} ⊆ {f(h) | h ∈ b}; and

• If D ⊆ 2H is a directed set, then {f(h) | h ∈
⋃
D} =

⋃
a∈D{f(h) | h ∈ a}.

Lemma A.5.11. Let P be a continuous Markov kernel and f : 2H → R+ a Scott-continuous

function. Then the map

a 7→
∫
c∈2H

f(c) · P (a, dc) (A.7)

is Scott-continuous.

240



Proof. The map (A.7) is the composition of the maps

a 7→ P (a,−) P (a,−) 7→
∫
c∈2H

P (a, dc) · f(c),

which are Scott-continuous by Lemmas A.5.19 and 3.7.1, respectively, and the composi-

tion of Scott-continuous maps is Scott-continuous.

Lemma A.5.12. Product preserves continuity of Markov kernels: If P and Q are continuous,

then so is P ×Q.

Proof. We wish to show that if a ⊆ b, then (P ×Q)(a,−) ⊑ (P ×Q)(b,−), and if A is a

directed subset of 2H, then (P ×Q)(
⋃
A) = supa∈A(P ×Q)(a,−). For the first statement,

using Lemma A.5.6 twice,

(P ×Q)(a,−) = P (a,−)×Q(a,−) ⊑ P (b,−)×Q(a,−)

⊑ P (b,−)×Q(b,−) = (P ×Q)(b,−).

For the second statement, for A a directed subset of 2H,

(P ×Q)(
⊔
A,−) = P (

⊔
A,−)×Q(

⊔
A,−)

= (
⊔

a∈AP (a,−))× (
⊔

b∈AQ(b,−))

=
⊔

a∈A
⊔

b∈AP (a,−)×Q(b,−)

=
⊔

a∈AP (a,−)×Q(a,−)

=
⊔

a∈A(P ×Q)(a,−).

Lemma A.5.13. Sequential composition preserves continuity of Markov kernels: If P and

Q are continuous, then so is P ·Q.

Proof. We have

(P ·Q)(a,A) =

∫
c∈2H

P (a, dc) ·Q(c, A).

241



Since Q is a continuous kernel, it is Scott-continuous in its first argument, thus so is P ·Q

by Lemma A.5.11.

Lemma A.5.14. Parallel composition preserves continuity of Markov kernels: If P and Q

are continuous, then so is P &Q.

Proof. Suppose P and Q are continuous. By definition, P &Q = (P ×Q) ·
⋃

. By Lemma

A.5.12, P ×Q is continuous, and
⋃

: 2H× 2H → 2H is continuous. Thus their composition

is continuous by Lemma A.5.13.

Lemma A.5.15. The probabilistic choice operator (⊕r) preserves continuity of kernels.

Proof. If P and Q are continuous, then P ⊕r Q = rP + (1− r)Q. If a ⊆ b, then

(P ⊕r Q)(a,−) = rP (a,−) + (1− r)Q(a,−)

≤ rP (b,−) + (1− r)Q(b,−)

= (P ⊕r Q)(b,−).

If A ⊆ 2H is a directed set, then

(P ⊕r Q)(
⋃
A,−) = rP (

⋃
A,−) + (1− r)Q(

⋃
A,−)

=
⊔

a∈A(rP (a,−) + (1− r)Q(a,−))

=
⊔

a∈A(P ⊕r Q)(a,−).

Lemma A.5.16. The iteration operator (*) preserves continuity of kernels.

Proof. Suppose P is continuous. It follows inductively using Lemmas A.5.14 and A.5.13

that P (n) is continuous. Since P ∗ =
⊔

n P
(n) and since the supremum of a directed set of

continuous kernels is continuous by Theorem 3.6.4, P ∗ is continuous.

Proof of Theorem 3.7.2. The result follows from Lemmas A.5.9, A.5.11, A.5.12, A.5.13,

A.5.14, A.5.15, and A.5.16.

242



Proof of Corollary 3.7.3. This follows from Theorem 3.7.2. All primitive programs are

deterministic, thus give continuous kernels, and continuity is preserved by all the program

operators.

A.5.4 Continuous Operations on Kernels

Lemma A.5.17. The product operation on kernels (×) is Scott-continuous in each argu-

ment.

Proof. We use Lemma A.5.6. If P1 ⊑ P2, then for all a ∈ 2H,

(P1 ×Q)(a,−) = P1(a,−)×Q(a,−)

⊑ P2(a,−)×Q(a,−) = (P2 ×Q)(a,−).

Since a was arbitrary, P1 ×Q ⊑ P2 ×Q. For a directed set D of kernels,

(
⊔
D ×Q)(a,−) = (

⊔
D)(a,−)×Q(a,−)

=
⊔

P∈DP (a,−)×Q(a,−)

=
⊔

P∈D(P (a,−)×Q(a,−))

=
⊔

P∈D(P ×Q)(a,−)

= (
⊔

P∈D(P ×Q))(a,−).

Since a was arbitrary,
⊔
D ×Q =

⊔
P∈D(P ×Q).

Lemma A.5.18. Parallel composition of kernels (&) is Scott-continuous in each argument.

Proof. By definition, P &Q = (P ×Q) ·
⋃

. By Lemmas A.5.17 and A.5.20, the product

operation and sequential composition are continuous in both arguments, thus their

composition is.

Lemma A.5.19. Let P be a continuous Markov kernel. The map curryP is Scott-continuous

with respect to the subset order on 2H and the order ⊑ onM(2H).

243



Proof. We have (curryP )(a) = P (a,−). Since P is monotone in its first argument, if

a ⊆ b and B ∈ O, then P (a,B) ≤ P (b, B). As B ∈ O was arbitrary,

(curryP )(a) = P (a,−) ⊑ P (b,−) = (curryP )(b).

This shows that curryP is monotone.

Let D ⊆ 2H be a directed set. By the monotonicity of curryP , so is the set

{(curryP )(a) | a ∈ D}. Then for any B ∈ O,

(curryP )(
⋃
D)(B) = P (

⋃
D,B) = sup

a∈D
P (a,B)

= sup
a∈D

(curryP )(a)(B)

= (
⊔

a∈D(curryP )(a))(B),

thus (curryP )(
⋃
D) =

⊔
a∈D(curryP )(a).

Lemma A.5.20. Sequential composition of kernels is Scott-continuous in each argument.

Proof. To show that · is continuous in its first argument, we wish to show that if P1, P2, Q

are any continuous kernels with P1 ⊑ P2, and if D is any directed set of continuous

kernels, then

P1 ·Q ≤ P2 ·Q (
⊔
D) ·Q =

⊔
P∈D(P ·Q).

We must show that for all a ∈ 2H and BO,∫
c

P1(a, dc) ·Q(c, B) ≤
∫
c

P2(a, dc) ·Q(c, B)∫
c

(
⊔
D)(a, dc) ·Q(c, B) = sup

P∈D

∫
c

P (a, dc) ·Q(c, B).

By Lemma 3.6.3, for all a ∈ 2H, P1(a,−) ⊑ P2(a,−) and (
⊔
D)(a,−) =

⊔
P∈DP (a,−), and

Q(−, B) is a Scott-continuous function by assumption. The result follows from Lemma

3.7.1(i).

244



The argument that · is continuous in its second argument is similar, using Lemma

3.7.1(ii). We wish to show that if P,Q1, Q2 are any continuous kernels with Q1 ⊑ Q2,

and if D is any directed set of continuous kernels, then

P ·Q1 ≤ P ·Q2 P ·
⊔
D =

⊔
Q∈D(P ·Q).

We must show that for all a ∈ 2H and B ∈ O,∫
c

P (a, dc) ·Q1(c, B) ≤
∫
c

P (a, dc) ·Q2(c, B)∫
c

P (a, dc) · (
⊔
D)(c, B) = sup

Q∈D

∫
c

P (a, dc) ·Q(c, B).

By Lemma 3.6.3, for all B ∈ O, Q1(−, B) ⊑ Q2(−, B) and (
⊔
D)(−, B) =

⊔
Q∈DQ(−, B).

The result follows from Lemma 3.7.1(ii).

Lemma A.5.21. The probabilistic choice operator applied to kernels (⊕r) is continuous in

each argument.

Proof. If P and Q are continuous, then P ⊕r Q = rP + (1 − r)Q. If P1 ⊑ P2, then for

any a ∈ 2H and B ∈ O,

(P1 ⊕r Q)(a,B) = rP1(a,B) + (1− r)Q(a,B)

≤ rP2(a,B) + (1− r)Q(a,B)

= (P2 ⊕r Q)(a,B),

so P1 ⊕r Q ⊑ P2 ⊕r Q. If D is a directed set of kernels and BO, then

(
⊔
D ⊕r Q)(a,B) = r(

⊔
D)(a,B) + (1− r)Q(a,B)

= sup
P∈D

(rP (a,B) + (1− r)Q(a,B))

= sup
P∈D

(P ⊕r Q)(a,B).

245



Lemma A.5.22. If P ⊑ Q then P (n) ⊑ Q(n).

Proof. By induction on n ∈ N. The claim is trivial for n = 0. For n > 0, we assume that

P (n−1) ⊑ Q(n−1) and deduce

P (n) = skip& P · P (n−1) ⊑ skip&Q ·Q(n−1) = Q(n)

by monotonicity of sequential and parallel composition (Lemmas A.5.20 and A.5.18,

respectively).

Lemma A.5.23. If m ≤ n then P (m) ⊑ P (n).

Proof. We have P (0) ⊑ P (1) by Lemmas 3.6.2 and 3.6.3. Proceeding by induction using

Lemma A.5.22, we have P (n) ⊑ P (n+1) for all n. The result follows from transitivity.

Lemma A.5.24. The iteration operator applied to kernels (*) is continuous.

Proof. It is a straightforward consequence of Lemma A.5.22 and Theorem 3.7.7 that if

P ⊑ Q, then P ∗ ⊑ Q∗. Now let D be a directed set of kernels. It follows by induction

using Lemmas A.5.18 and A.5.20 that the operator P 7→ P (n) is continuous, thus

(
⊔
D)∗ =

⊔
n(
⊔
D)(n) =

⊔
n

⊔
P∈DP

(n)

=
⊔

P∈D
⊔

nP
(n) =

⊔
P∈DP

∗.

Proof of Theorem 3.7.4. The result follows from Lemmas A.5.17, A.5.18, A.5.19, A.5.20,

A.5.21, and A.5.24.

A.5.5 Iteration as Least Fixpoint

In this section we show that the semantics of iteration presented in [44], defined in

terms of an infinite process, coincides with the least fixpoint semantics presented here.

246



In this section, we use the notation P ∗ refers to the semantics of [44]. For the iterate

introduced here, we use
⊔

n P
(n).

Recall from [44] the approximants

P (0) = skip P (m+1) = skip& P · P (m).

It was shown in [44] that for any c ∈ 2H, the measures P (m)(c,−) converge weakly to

P ∗(c,−); that is, for any bounded (Cantor-)continuous real-valued function f on 2H, the

expected values of f with respect to the measures P (m)(c,−) converge to the expected

value of f with respect to P ∗(c,−):

lim
m→∞

∫
a∈2H

f(a) · P (m)(c, da) =

∫
a∈2H

f(a) · P ∗(c, da).

Theorem A.5.25. The kernel Q =
⊔

n∈N P
(n) is the unique fixpoint of (λQ. skip & P · Q)

such that P (n)(a) weakly converges to Q(a) (with respect to the Cantor topology) for all

a ∈ 2H.

Proof. Let P ∗ denote any fixpoint of (λQ. skip&P ·Q) such that the measure µn = P (n)(a)

weakly converges to the measure µ = P ∗(a), i.e. such that for all (Cantor-)continuous

bounded functions f : 2H → R

lim
n→∞

∫
fdµn =

∫
fdµ

for all a ∈ 2H. Let ν = Q(a). Fix an arbitrary Scott-open set V . Since 2H is a Polish space

under the Cantor topology, there exists an increasing chain of compact sets

C1 ⊆ C2 ⊆ · · · ⊆ V such that sup
n∈N

µ(Cn) = µ(V ).

By Urysohn’s lemma (see [84, 145]), there exist continuous functions fn : 2H → [0, 1]

247



such that fn(x) = 1 for x ∈ Cn and f(x) = 0 for x ∈ ∼V . We thus have

µ(Cn) =

∫
1Cndµ

≤
∫

fndµ by monotonicity of
∫

= lim
m→∞

∫
fndµm by weak convergence

≤ lim
m→∞

∫
1V dµm by monotonicity of

∫
= lim

m→∞
µm(V )

= ν(V ) by pointwise convergence on O

Taking the supremum over n, we get that µ(V ) ≤ ν(V ). Since ν is the ⊑-least fixpoint, the

measures must therefore agree on V , which implies that they are equal by Theorem 3.5.4.

Thus, any fixpoint of (λQ. skip&P ·Q) with the weak convergence property must be equal

to Q. But the fixpoint P ∗ defined in previous work does enjoy the weak convergence

property, and therefore so does Q = P ∗.

Proof of Lemma 3.7.6. Let A be a Borel set. Since we are in a Polish space, µ(A) is

approximated arbitrarily closely from below by µ(C) for compact sets C ⊆ A and from

above by µ(U) for open sets U ⊇ A. By Urysohn’s lemma (see [84, 145]), there exists a

continuous function f : D → [0, 1] such that f(a) = 1 for all a ∈ C and f(a) = 0 for all

a ̸∈ U . We thus have

µ(C) =

∫
a∈C

f(a) · µ(da) ≤
∫
a∈D

f(a) · µ(da)

=

∫
a∈U

f(a) · µ(da) ≤ µ(U),

µ(C) ≤ µ(A) ≤ µ(U),

thus ∣∣∣∣µ(A)− ∫
a∈D

f(a) · µ(da)
∣∣∣∣ ≤ µ(U)− µ(C),

and the right-hand side can be made arbitrarily small.

248



By Lemma 3.7.6, if P,Q are two Markov kernels and∫
a∈2H

f(a) · P (c, da) =

∫
a∈2H

f(a) ·Q(c, da)

for all Cantor-continuous f : 2H → [0, 1], then P (c,−) = Q(c,−). If this holds for all

c ∈ 2H, then P = Q.

Proof of Theorem 3.7.5. Let ε > 0. Since all continuous functions on a compact space are

uniformly continuous, for sufficiently large finite b and for all a ⊆ b, the value of f does

not vary by more than ε on Aab; that is, supc∈Aab
f(c)− infc∈Aab

f(c) < ε. Then for any µ,∫
c∈Aab

f(c) · µ(dc)−
∫
c∈Aab

inf
c∈Aab

f(c) · µ(dc)

≤
∫
c∈Aab

( sup
c∈Aab

f(c)− inf
c∈Aab

f(c)) · µ(dc) < ε · µ(Aab).

Moreover,

(
⊔
A)(Aab) =

∑
a⊆c⊆b

(−1)|c−a|(
⊔
A)(Bc)

=
∑
a⊆c⊆b

(−1)|c−a| sup
µ∈A

µ(Bc)

= lim
µ∈A

∑
a⊆c⊆b

(−1)|c−a|µ(Bc) = lim
µ∈A

µ(Aab),

so for sufficiently large µ ∈ A, µ(Aab) does not differ from (
⊔
A)(Aab) by more than

ε · 2−|b|. Then for any constant r ∈ [0, 1],∣∣∣∣∫
c∈Aab

r · (
⊔
A)(dc)−

∫
c∈Aab

r · µ(dc)
∣∣∣∣

= r · |(
⊔
A)(Aab)− µ(Aab)|

≤ |(
⊔
A)(Aab)− µ(Aab)| < ε · 2−|b|.

249



Combining these observations,∣∣∣∣∫
c∈2H

f(c) · (
⊔
A)(dc)−

∫
c∈2H

f(c) · µ(dc)
∣∣∣∣

=

∣∣∣∣∣∑
a⊆b

∫
c∈Aab

f(c) · (
⊔
A)(dc)−

∑
a⊆b

∫
c∈Aab

f(c) · µ(dc)

∣∣∣∣∣
≤
∑
a⊆b

(∣∣∣∣∫
c∈Aab

f(c) · (
⊔
A)(dc)−

∫
c∈Aab

inf
c∈Aab

f(c) · (
⊔
A)(dc)

∣∣∣∣
+

∣∣∣∣∫
c∈Aab

inf
c∈Aab

f(c) · (
⊔
A)(dc)−

∫
c∈Aab

inf
c∈Aab

f(c) · µ(dc)
∣∣∣∣

+

∣∣∣∣∫
c∈Aab

inf
c∈Aab

f(c) · µ(dc)−
∫
c∈Aab

f(c) · µ(dc)
∣∣∣∣)

≤
∑
a⊆b

(
ε · (
⊔
A)(Aab) + ε · 2−|b| + ε · µ(Aab)

)
= 3ε.

As ε > 0 was arbitrary,

lim
µ∈A

∫
c∈2H

f(c) · µ(dc) =
∫
c∈2H

f(c) · (
⊔
A)(dc).

Proof of Theorem 3.7.7. Consider the continuous transformation

TP (Q) := skip& P ·Q

on the DCPO of continuous Markov kernels. The continuity of TP follows from Lemmas

A.5.18 and A.5.20. The bottom element ⊥ is drop in this space, and

TP (⊥) = skip = P (0) TP (P
(n)) = skip& P · P (n) = P (n+1),

thus T n+1
P (⊥) = P (n), so

⊔
T n
P (⊥) =

⊔
n P

(n), and this is the least fixpoint of TP . As

shown in [44], P⊛ is also a fixpoint of TP , so it remains to show that P⊛ =
⊔

n P
(n).

Let c ∈ 2H. As shown in [44], the measures P (n)(c,−) converge weakly to P⊛(c,−);

that is, for any Cantor-continuous function f : 2H → [0, 1], the expected values of f

relative to P (n) converge to the expected value of f relative to P⊛:

lim
n

∫
f(a) · P (n)(c, da) =

∫
f(a) · P⊛(c, da).

250



But by Theorem 3.7.5, we also have

lim
n

∫
f(a) · P (n)(c, da) =

∫
f(a) · (

⊔
n

P (n))(c, da),

thus ∫
f(a) · P⊛(c, da) =

∫
f(a) · (

⊔
nP

(n))(c, da).

As f was arbitrary, we have P⊛(c,−) = (
⊔

nP
(n))(c,−) by Lemma 3.7.6, and as c was

arbitrary, we have P⊛ =
⊔

nP
(n).

A.6 Approximation and Discrete Measures

This section contains the proofs of Section 3.8. We need the following auxiliary lemma

to prove Theorem 3.8.3.

Lemma A.6.1.

(i) For any Borel set B, (µ↾b)(B) = µ({c | c ∩ b ∈ B}).

(ii) (µ↾b)↾d = µ↾(b ∩ d).

(iii) If a, b ∈ ℘ω(H) and a ⊆ b, then µ↾a ⊑ µ↾b ⊑ µ.

(iv) µ ⊑ δb iff µ = µ↾b.

(v) The function µ 7→ µ↾b is continuous.

Proof. (i)

(µ↾b)(B) =
∑
a⊆b

µ(Aab)δa(B) =
∑
a⊆b

µ({c | c ∩ b = a})[a ∈ B]

=
∑
a⊆b
a∈B

µ({c | c ∩ b = a}) = µ(
⋃
a⊆b
a∈B

{c | c ∩ b = a})

= µ({c | c ∩ b ∈ B}).

251



(ii) For any Borel set B,

((µ↾b)↾d)(B) = (µ↾b)({c | c ∩ d ∈ B})

= µ({c | c ∩ b ∈ {c | c ∩ d ∈ B}})

= µ({c | c ∩ b ∩ d ∈ B})

= (µ↾(b ∩ d))(B).

(iii) If a ⊆ b, then for any up-closed Borel set B,

{c | c ∩ a ∈ B} ⊆ {c | c ∩ b ∈ B} ⊆ B,

µ({c | c ∩ a ∈ B}) ≤ µ({c | c ∩ b ∈ B}) ≤ µ(B),

(µ↾a)(B) ≤ (µ↾b)(B) ≤ µ(B).

As this holds for all B ∈ O, we have µ↾a ⊑ µ↾b ⊑ µ.

(iv) First we show that µ↾b ⊑ δb. For any up-closed Borel set B,

(µ↾b)(B) =
∑
a⊆b

µ(Aab)[a ∈ B]

≤
∑
a⊆b

µ(Aab)[b ∈ B] = [b ∈ B] = δb(B).

Now we show that if µ ⊑ δb, then µ = µ↾b. From

d ⊆ b ∧ d ⊆ c⇔ d ⊆ c ∩ b c ∈ Bd ⇔ d ⊆ c

we have

(∃d ∈ F d ⊆ b ∧ c ∈ Bd)⇔ (∃d ∈ F c ∩ b ∈ Bd)

c ∈
⋃
d∈F
d⊆b

Bd ⇔ c ∩ b ∈
⋃
d∈F

Bd

(µ↾b)(
⋃
d∈F

Bd) = µ({c | c ∩ b ∈
⋃
d∈F

Bd}) = µ(
⋃
d∈F
d⊆b

Bd). (A.8)

252



Now if µ ⊑ δb, then

µ(
⋃
d∈F
d̸⊆b

Bd) ≤ δb(
⋃
d∈F
d ̸⊆b

Bd) = [b ∈
⋃
d∈F
d ̸⊆b

Bd] = 0,

so

µ(
⋃
d∈F

Bd) ≤ µ(
⋃
d∈F
d⊆b

Bd) + µ(
⋃
d∈F
d ̸⊆b

Bd) = µ(
⋃
d∈F
d⊆b

Bd).

Combining this with (A.8), we have that µ and µ↾b agree on all B ∈ O, therefore they

agree everywhere.

(v) If µ ⊑ ν, then for all B ∈ O,

(µ↾b)(B) = µ({c | c ∩ b ∈ B})

≤ ν({c | c ∩ b ∈ B}) = (ν ↾b)(B).

Also, for any directed set D of measures and B ∈ O,

((
⊔
D)↾b)(B) = (

⊔
D)({c | c ∩ b ∈ B})

= sup
µ∈D

µ({c | c ∩ b ∈ B}) = sup
µ∈D

(µ↾b)(B)

= (
⊔

µ∈D(µ↾b))(B),

therefore (
⊔
D)↾b =

⊔
µ∈D(µ↾b).

Proof of Theorem 3.8.3. The set {µ ↾ b | b ∈ ℘ω(H)} is a directed set below µ by Lemma

A.6.1(iii), and for any up-closed Borel set B,

(
⊔

b∈℘ω(H)

µ↾b)(B) = sup
b∈℘ω(H)

µ({c | c ∩ b ∈ B})

= µ(
⋃

b∈℘ω(H)

{c | c ∩ b ∈ B}) = µ(B).

An approximating set for µ is the set

L = {
∑
a⊆b

raδa | b ∈ ℘ω(H), ra < µ(Aab) for all a ̸= ∅}.

253



If L is empty, then µ(A∅b) = 1 for all finite b, in which case µ = δ∅ and there is nothing

to prove. Otherwise, L is a nonempty directed set whose supremum is µ.

Now we show that ν ≪ µ for any ν ∈ L. Suppose D is a directed set and µ ⊑
⊔
D.

By Lemma A.6.1(iii) and (v),

µ↾b ⊑ (
⊔

D)↾b =
⊔
ρ∈D

ρ↾b.

Moreover, for any B ∈ O, B ̸= B∅, and
∑

a⊆b raδa ∈ L,

(ν ↾b)(B) =
∑
a∈B

ν(Aab)[a ∈ B]

<
∑
a∈B

µ(Aab)[a ∈ B] = (µ↾b)(B).

Then ν(B∅) = ρ(B∅) = 1 for all ρ ∈ D, and for any B ∈ O, B ̸= B∅,

(ν ↾b)(B) < (µ↾b)(B) ≤ sup
ρ∈D

(ρ↾b)(B) (A.9)

so there exists ρ ∈ D such that (ν ↾ b)(B) ≤ (ρ ↾ b)(B). But since B can intersect 2H in

only finitely many ways and D is directed, a single ρ ∈ D can be found such that (A.9)

holds uniformly for all B ∈ O, B ̸= B∅. Then ν ↾b ⊑ ρ ∈ D.

Proof of Corollary 3.8.4. Let f : 2H → 2H map a to a ∩ b. This is a continuous function

that gives rise to a deterministic kernel. Then for any B ∈ O,

(P · b)(a,B) = P (a, f−1(B)) = P (a, {c | c ∩ b ∈ B})

= (P (a,−)↾b)(B).

254



Chapter B

Appendix to Chapter 4

B.1 ProbNetKAT Denotational Semantics for History-free Fragment

In the original ProbNetKAT language (Chapter 3), programs manipulate sets of packet

histories—non-empty, finite sequences of packets modeling trajectories through the

network [44, 165]. The resulting state space is uncountable and modeling the semantics

properly requires full-blown measure theory as some programs generate continuous

distributions (Chapter 3). In the history-free fragment considered in Chapter 4, programs

manipulate sets of packets and the state space is finite, permitting a much simpler

semantics using only discrete probability measures (Figure B.1). This section is concerned

with formalizing this simpler semantics. We will then prove (in Appendix B.2) that the

simpler semantics is equivalent to the original semantics from Chapter 3 in the following

sense:

Proposition B.1.1. Let p be a dup-free program, let LpM ∈ 2H → D(2H) denote the semantics

defined in Chapter 3, and let JpK ∈ 2Pk → D(2Pk) denote the semantics defined in Figure B.1.

Then for all inputs a ∈ 2Pk, we have JpK(a) = LpM(a), where we identify packets and histories

of length one.

Before we turn to proving this claim in Appendix B.2, we formalize the discrete

semantics in detail.

255



Semantics JpK ∈ 2Pk → D(2Pk)

JdropK(a) := δ(∅)

JskipK(a) := δ(a)

Jf =nK(a) := δ({π ∈ a | π.f = n})
Jf �nK(a) := δ({π[f :=n] | π ∈ a})

J¬tK(a) := D(λb.a− b)(JtK(a))
Jp& qK(a) := D(∪)(JpK(a)× JqK(a))
Jp · qK(a) := JqK†(JpK(a))

Jp⊕r qK(a) := r · JpK(a) + (1− r) · JqK(a)
Jp∗K(a) :=

⊔
n∈N

Jp(n)K(a)

where p(0) := skip, p(n+1) := skip& p · p(n)

(Discrete) Probability MonadD

Unit δ : X → D(X) δ(x) := δx

Bind −† : (X → D(Y ))→ D(X)→ D(Y )

f †(µ)(A) :=
∑

x∈X f(x)(A) · µ(x)

Figure B.1: Discrete ProbNetKAT semantics for history-free fragment (without dup).

We work in the discrete space 2Pk, i.e., the set of sets of packets. An outcome

(denoted by lowercase variables a, b, c, . . . ) is a set of packets and an event (denoted

by uppercase variables A,B,C, . . . ) is a set of outcomes. Given a discrete probability

measure on this space, the probability of an event is the sum of the probabilities of its

outcomes.

ProbNetKAT programs are interpreted as Markov kernels on the space 2Pk. A Markov

kernel is a function 2Pk → D(2Pk) where D is the probability (or Giry) monad [52, 87].

Thus, a program p maps an input set of packets a ∈ 2Pk to a distribution JpK(a) ∈ D(2Pk)

over output sets of packets. The semantics uses the following probabilistic constructions:

• For a discrete measurable space X, D(X) denotes the set of probability measures

over X; that is, the set of countably additive functions µ : 2X → [0, 1] with µ(X) = 1.

• For a measurable function f : X → Y , D(f) : D(X)→ D(Y ) denotes the pushfor-

ward along f ; that is, the function that maps a measure µ on X to

D(f)(µ) := µ ◦ f−1 = λA ∈ ΣY . µ({x ∈ X | f(x) ∈ A})

which is called the pushforward measure on Y .

256



• The unit δ : X → D(X) of the monad maps a point x ∈ X to the point mass (or

Dirac measure) δx ∈ D(X). The Dirac measure is given by

δx(A) := [x ∈ A]

That is, the Dirac measure is 1 if x ∈ A and 0 otherwise.

• The bind operation of the monad,

−† : (X → D(Y ))→ D(X)→ D(Y ),

lifts a function f : X → D(Y ) with deterministic inputs to a function f † : D(X)→

D(Y ) that takes random inputs. Intuitively, this is achieved by averaging the output

of f when the inputs are randomly distributed according to µ. Formally,

f †(µ)(A) :=
∑
x∈X

f(x)(A) · µ(x).

• Given two measures µ ∈ D(X) and ν ∈ D(Y ), µ × ν ∈ D(X × Y ) denotes their

product measure. This is the unique measure satisfying

(µ× ν)(A×B) = µ(A) · ν(B)

Intuitively, it models distributions over pairs of independent values.

Using these primitives, we can now make our operational intuitions precise (see

Figure B.1 for formal definitions). A predicate t maps the set of input packets a ∈ 2Pk

to the subset of packets b ⊆ a satisfying the predicate (with probability 1). Hence, drop

drops all packets (i.e., it returns the empty set) while skip keeps all packets (i.e., it

returns the input set). The test f =n returns the subset of input packets whose f -field is

n. Negation ¬t filters out the packets returned by t.

Parallel composition p & q executes p and q independently on the input set, then

returns the union of their results. Note that packet sets do not model nondeterminism,

257



unlike the usual situation in Kleene algebras—rather, they model collections of packets

traversing possibly different portions of the network simultaneously. In particular,

the union operation is not idempotent: p & p need not have the same semantics as

p. Probabilistic choice p ⊕r q feeds the input to both p and q and returns a convex

combination of the output distributions according to r. Sequential composition p · q can

be thought of as a two-stage probabilistic process: it first executes p on the input set to

obtain a random intermediate result, then feeds that into q to obtain the final distribution

over outputs. The outcome of q is averaged over the distribution of intermediate results

produced by p.

We say that two programs are equivalent, denoted p ≡ q, if they denote the same

Markov kernel, i.e. if JpK = JqK. As usual, we expect Kleene star p∗ to satisfy the

characteristic fixed point equation p∗ ≡ skip & p · p∗, which allows it to be unrolled ad

infinitum. Thus we define it as the supremum of its finite unrollings p(n); see Figure B.1.

This supremum is taken in a CPO (D(2Pk),⊑) of distributions that is described in more

detail in the next section (Appendix B.1.1). The partial ordering ⊑ on packet set

distributions gives rise to a partial ordering on programs: we write p ≤ q iff JpK(a) ⊑

JqK(a) for all inputs a ∈ 2Pk. Intuitively, p ≤ q iff p produces any particular output packet

π with probability at most that of q for any fixed input—q has a larger probability of

delivering more output packets.

B.1.1 The CPO (D(2Pk),⊑)

The space 2Pk with the subset order forms a CPO (2Pk,⊆). Following Saheb-Djahromi

[151], this CPO can be lifted to a CPO (D(2Pk),⊑) on distributions over 2Pk. Because 2Pk

is a finite space, the resulting ordering ⊑ on distributions takes a particularly easy form:

µ ⊑ ν ⇐⇒ µ({a}↑) ≤ ν({a}↑) for all a ⊆ Pk

258



where {a}↑ := {b | a ⊆ b} denotes upward closure. Intuitively, the probability of

observing a particular packet in a set sampled from µ is smaller than if sampling from

ν. As shown in Chapter 3, ProbNetKAT satisfies various monotonicity (and continuity)

properties with respect to this ordering, including

a ⊆ a′ =⇒ JpK(a) ⊑ JpK(a′) and n ≤ m =⇒ Jp(n)K(a) ⊑ Jp(m)K(a).

As a result, the semantics of p∗ as the supremum of its finite unrollings p(n) is well-defined.

While the semantics of full ProbNetKAT requires more domain theory to give a

satisfactory characterization of Kleene star, a simpler characterization suffices for the

history-free fragment.

Lemma B.1.2 (Pointwise Convergence). Let A ⊆ 2Pk. Then for all programs p and inputs

a ∈ 2Pk,

Jp∗K(a)(A) = lim
n→∞

Jp(n)K(a)(A).

B.2 Omitted Proofs

Lemma B.2.1. Let A be a finite boolean combination of basic open sets, i.e. sets of the form

Ba = {a} ↑ for a ∈ ℘ω(H), and let L−M denote the semantics from Chapter 3. Then for all

programs p and inputs a ∈ 2H,

Lp∗M(a)(A) = lim
n→∞

Lp(n)M(a)(A)

Proof. Using topological arguments, the claim follows directly from previous results: A

is a Cantor-clopen set by Chapter 3 (i.e., both A and A are Cantor-open), so its indicator

function 1A is Cantor-continuous. But µn := Lp(n)M(a) converges weakly to µ := Lp∗M(a)

in the Cantor topology [44, Theorem 4], so

lim
n→∞

Lp(n)M(a)(A) = lim
n→∞

∫
1Adµn =

∫
1Adµ = Lp∗M(a)(A)

259



(To see why A and A are open in the Cantor topology, note that they can be written in

disjunctive normal form over atoms B{h}.)

Predicates in ProbNetKAT form a Boolean algebra.

Lemma B.2.2. Every predicate t satisfies JtK(a) = δa∩bt, for bt ⊆ Pk chosen as follows:

bdrop := ∅ bt&u := bt ∪ bu bf =n := {π ∈ Pk | π.f = n}

bskip := Pk bt·u := bt ∩ bu b¬t := Pk− bt

Proof. For drop, skip, and f =n, the claim holds trivially. For ¬t, t& u, and t · u, the claim

follows inductively, using that D(f)(δb) = δf(b), δb × δc = δ(b,c), and that f †(δb) = f(b).

The first and last equations hold because ⟨D, δ,−†⟩ is a monad.

Proof of Proposition B.1.1. We only need to show that for dup-free programs p and history-

free inputs a ∈ 2Pk, LpM(a) is a distribution on packets (where we identify packets and

singleton histories). We proceed by structural induction on p. All cases are straight-

forward except perhaps the case of p∗. For this case, by the induction hypothesis, all

Jp(n)K(a) are discrete probability distributions on packet sets, therefore vanish outside

2Pk. By Lemma B.2.1, this is also true of the limit Jp∗K(a), as its value on 2Pk must be 1,

therefore it is also a discrete distribution on packet sets.

Proof of Lemma B.1.2. This follows directly from Lemma B.2.1 and Proposition B.1.1 by

noticing that any set A ⊆ 2Pk is a finite boolean combination of basic open sets.

Proof of Theorem 4.3.1. It suffices to show the equality BJpKab = JpK(a)({b}); the re-

maining claims then follow by well-definedness of J−K. The equality is shown using

Lemma B.1.2 and a routine induction on p:

For p = drop, skip, f=n, f�n we have

JpK(a)({b}) = δc({b}) = [b = c] = BJpKab

260



for c = ∅, a, {π ∈ a | π.f = n}, {π[f := n] | π ∈ a}, respectively.

For ¬t we have,

BJ¬tKab = [b ⊆ a] · BJtKa,a−b

= [b ⊆ a] · JtK(a)({a− b}) (IH)

= [b ⊆ a] · [a− b = a ∩ bt] (Lemma B.2.2)

= [b ⊆ a] · [a− b = a− (H− bt)]

= [b = a ∩ (H − bt)]

= J¬tK(a)(b) (Lemma B.2.2)

For p& q, letting µ = JpK(a) and ν = JqK(a) we have

Jp& qK(a)({b}) = (µ× ν)({(b1, b2) | b1 ∪ b2 = b})

=
∑

b1,b2
[b1 ∪ b2 = b] · (µ× ν)({(b1, b2)})

=
∑

b1,b2
[b1 ∪ b2 = b] · µ({b1}) · ν({b2})

=
∑

b1,b2
[b1 ∪ b2 = b] · BJpKab1 · BJqKab2 (IH)

= BJp& qKab

where we use in the second step that b ⊆ Pk is finite, thus {(b1, b2) | b1 ∪ b2 = b} is finite.

For p · q, let µ = JpK(a) and νc = JqK(c) and recall that µ is a discrete distribution on

2Pk. Thus
Jp · qK(a)({b}) =

∑
c∈2Pk νc({b}) · µ({c})

=
∑

c∈2Pk BJqKc,b · BJpKa,c

= BJp · qKab.

For p⊕r q, the claim follows directly from the induction hypotheses.

Finally, for p∗, we know that BJp(n)Kab = Jp(n)K(a)({b}) by induction hypothesis. The

key to proving the claim is Lemma B.1.2, which allows us to take the limit on both sides

and deduce

BJp∗Kab = lim
n→∞

BJp(n)Kab = lim
n→∞

Jp(n)K(a)({b}) = Jp∗K(a)({b}).

261



Proof of Lemma 4.4.1. For arbitrary a, b ⊆ Pk, we have

∑
a′,b′

SJpK(a,b),(a′,b′) =
∑
a′,b′

[b′ = a ∪ b] · BJpKa,a′

=
∑
a′

(∑
b′

[b′ = a ∪ b]
)
· BJpKa,a′

=
∑
a′

BJpKa,a′ = 1

where in the last step, we use that BJpK is stochastic (Theorem 4.3.1).

Proof of Lemma 4.4.3. By induction on n ≥ 0. For n = 0, we have

∑
a′

[b′ = a′ ∪ b] · BJp(n)Ka,a′ =
∑
a′

[b′ = a′ ∪ b] · BJskipKa,a′

=
∑
a′

[b′ = a′ ∪ b] · [a = a′]

= [b′ = a ∪ b]

= [b′ = a ∪ b] ·
∑
a′

BJpKa,a′

=
∑
a′

SJpK(a,b),(a′,b′)

262



In the induction step (n > 0),∑
a′

[b′ = a′ ∪ b] · BJp(n)Ka,a′

=
∑
a′

[b′ = a′ ∪ b] · BJskip& p · p(n−1)Ka,a′

=
∑
a′

[b′ = a′ ∪ b] ·
∑
c

[a′ = a ∪ c] · BJp · p(n−1)Ka,c

=
∑
c

(∑
a′

[b′ = a′ ∪ b] · [a′ = a ∪ c]

)
·
∑
k

BJpKa,k · BJp(n−1)Kk,c

=
∑
c,k

[b′ = a ∪ c ∪ b] · BJpKa,k · BJp(n−1)Kk,c

=
∑
k

BJpKa,k ·
∑
a′

[b′ = a′ ∪ (a ∪ b)] · BJp(n−1)Kk,a′

=
∑
k

BJpKa,k ·
∑
a′

SJpKn(k,a∪b),(a′,b′)

=
∑
a′

∑
k1,k2

[k2 = a ∪ b] · BJpKa,k1 · SJpKn(k1,k2),(a′,b′)

=
∑
a′

∑
k1,k2

SJpK(a,b)(k1,k2) · SJpKn(k1,k2),(a′,b′)

=
∑
a′

SJpKn+1
(a,b),(a′,b′)

Lemma B.2.3. The matrix X = I −Q in Equation (4.2) of Section 4.4 is invertible.

Proof. Let S be a finite set of states, |S| = n, M an S × S substochastic matrix (Mst ≥ 0,

M1 ≤ 1). A state s is defective if (M1)s < 1. We say M is stochastic if M1 = 1, irreducible

if (
∑n−1

i=0 M i)st > 0 (that is, the support graph of M is strongly connected), and aperiodic

if all entries of some power of M are strictly positive.

We show that if M is substochastic such that every state can reach a defective state

via a path in the support graph, then the spectral radius of M is strictly less than 1.

Intuitively, all weight in the system eventually drains out at the defective states.

Let es, s ∈ S, be the standard basis vectors. As a distribution, eTs is the unit point

mass on s. For A ⊆ S, let eA =
∑

s∈A es. The L1-norm of a substochastic vector is its

263



total weight as a distribution. Multiplying on the right by M never increases total weight,

but will strictly decrease it if there is nonzero weight on a defective state. Since every

state can reach a defective state, this must happen after n steps, thus ∥eTs Mn∥1 < 1. Let

c = maxs ∥eTs Mn∥1 < 1. For any y =
∑

s ases,

∥yTMn∥1 = ∥(
∑
s

ases)
TMn∥1

≤
∑
s

|as| · ∥eTs Mn∥1 ≤
∑
s

|as| · c = c · ∥yT∥1.

Then Mn is contractive in the L1 norm, so |λ| < 1 for all eigenvalues λ. Thus I −M is

invertible because 1 is not an eigenvalue of M .

Proof of Proposition 4.4.6.

1. It suffices to show that USU = SU . Suppose that

Pr[(a, b)
USU−−−→1 (a

′, b′)] = p > 0.

It suffices to show that this implies

Pr[(a, b)
SU−−→1 (a

′, b′)] = p.

If (a, b) is saturated, then we must have (a′, b′) = (∅, b) and

Pr[(a, b)
USU−−−→1 (∅, b)] = 1 = Pr[(a, b)

SU−−→1 (∅, b)]

If (a, b) is not saturated, then (a, b)
U−→1 (a, b) with probability 1 and therefore

Pr[(a, b)
USU−−−→1 (a

′, b′)] = Pr[(a, b)
SU−−→1 (a

′, b′)]

2. Since S and U are stochastic, clearly SU is a MC. Since SU is finite state, any state

can reach an absorbing communication class. (To see this, note that the reachability

relation SU−−→ induces a partial order on the communication classes of SU . Its maximal

elements are necessarily absorbing, and they must exist because the state space is

finite.) It thus suffices to show that a state set C ⊆ 2Pk × 2Pk in SU is an absorbing

communication class iff C = {(∅, b)} for some b ⊆ Pk.

264



“⇐”: Observe that ∅ B−→1 a
′ iff a′ = ∅. Thus (∅, b)

S−→1 (a
′, b′) iff a′ = ∅ and b′ = b, and

likewise (∅, b)
U−→1 (a

′, b′) iff a′ = ∅ and b′ = b. Thus (∅, b) is an absorbing state

in SU as required.

“⇒”: First observe that by monotonicity of SU (Lemma 4.4.5), we have b = b′ when-

ever (a, b)
SU←→ (a′, b′); thus there exists a fixed bC such that (a, b) ∈ C implies

b = bC .

Now pick an arbitrary state (a, bC) ∈ C. It suffices to show that (a, bC)
SU−−→

(∅, bC), because that implies (a, bC)
SU←→ (∅, bC), which in turn implies a = ∅.

But the choice of (a, bC) ∈ C was arbitrary, so that would mean C = {(∅, bC)} as

claimed.

To show that (a, bC)
SU−−→ (∅, bC), pick arbitrary states such that

(a, bC)
S−→ (a′, b′)

U−→1 (a
′′, b′′)

and recall that this implies (a, bC)
SU−−→ (a′′, b′′) by claim (1). Then (a′′, b′′)

SU−−→

(a, bC) because C is absorbing, and thus bC = b′ = b′′ by monotonicity of S, U ,

and SU . But (a′, b′) was chosen as an arbitrary state S-reachable from (a, bC), so

(a, b) and by transitivity (a′, b′) must be saturated. Thus a′′ = ∅ by the definition

of U .

Proof of Theorem 4.4.7. Using Proposition 4.4.6.1 in the second step and equation (4.3)

in the last step,

lim
n→∞

∑
a′

Sn
(a,b),(a′,b′) = lim

n→∞

∑
a′

(SnU)(a,b),(a′,b′)

= lim
n→∞

∑
a′

(SU)n(a,b),(a′,b′)

=
∑
a′

(SU)∞(a,b),(a′,b′) = (SU)∞(a,b),(∅,b′)

(SU)∞ is computable because S and U are matrices over Q and hence so is (I −Q)−1R.

265



Corollary B.2.4. For programs p and q, it is decidable whether p ≡ q.

Proof of Corollary B.2.4. Recall from Corollary 4.3.2 that it suffices to compute the finite

rational matrices BJpK and BJqK and check them for equality. But Theorem 4.4.7 together

with Proposition 4.4.2 gives us an effective mechanism to compute BJ−K in the case of

Kleene star, and BJ−K is straightforward to compute in all other cases. Summarizing the

full chain of equalities, we have:

Jp∗K(a)({b}) = BJp∗Ka,b = lim
n→∞

BJp(n)Ka,b = lim
n→∞

∑
a′

SJpKn(a,∅),(a′,b) = (SU)∞(a,∅),(∅,b)

following from Theorem 4.3.1, Definition of BJ−K, Proposition 4.4.2, and finally Theo-

rem 4.4.7.

B.3 Background on Datacenter Topologies

Data center topologies typically organize the network fabric into several levels of

switches.

FatTree. A FatTree [3] is perhaps the most common example of a multi-level, multi-

rooted tree topology. Figure 4.5 shows a 3-level FatTree topology with 20 switches. The

bottom level, edge, consists of top-of-rack (ToR) switches; each ToR switch connects all

the hosts within a rack (not shown in the figure). These switches act as ingress and egress

for intra-data center traffic. The other two levels, aggregation and core, redundantly

connect the switches from the edge layer.

The redundant structure of a FatTree makes it possible to implement fault-tolerant

routing schemes that detect and automatically route around failed links. For instance,

consider routing from a source to a destination along shortest paths—e.g., the green

links in the figure depict one possible path from (s7) to (s1). On the way from the ToR to

the core switch, there are multiple paths that could be used to carry the traffic. Hence, if

266



one of the links goes down, the switches can route around the failure by simply choosing

a different path. Equal-cost multi-path (ECMP) routing is widely used—it automatically

chooses among the available paths while avoiding longer paths that might increase

latency.

However, after reaching a core switch, there is a unique shortest path down to

the destination. Hence, ECMP no longer provides any resilience if a switch fails in the

aggregation layer (cf. the red cross in Figure 4.5). A more sophisticated scheme could

take a longer (5-hop) detour going all the way to another edge switch, as shown by the

red lines in the figure. Unfortunately, such detours can lead to increased latency and

congestion.

AB FatTree. The long detours on the downward paths in FatTrees are dictated by the

symmetric wiring of aggregation and core switches. AB FatTrees [106] alleviate this by

using two types of subtrees, differing in their wiring to higher levels. Figure 4.10(a)

shows how to rewire a FatTree to make it an AB FatTree. The two types of subtrees are

as follows:

i) Type A: switches depicted in blue and wired to core using dashed lines.

ii) Type B: switches depicted in red and wired to core using solid lines.

Type A subtrees are wired in a way similar to FatTree, but Type B subtrees differ in their

connections to core switches. In our diagrams, each aggregation switch in a Type A

subtree is wired to adjacent core switches, while each aggregation switch in a Type B

subtree is wired to core switches in a staggered manner. (See the original paper by Liu

et al. [106] for the general construction.)

This slight change in wiring enables much shorter detours around failures in the

downward direction. Consider again routing from source (s7) to destination (s1). As

before, we have multiple options going upwards when following shortest paths (e.g., the

267



one depicted in green), as well as a unique downward path. But unlike FatTree, if the

aggregation switch on the downward path fails, there is a short detour, as shown in blue.

This path exists because the core switch, which needs to re-route traffic, is connected to

aggregation switches of both types of subtrees. More generally, aggregation switches of

the same type as the failed switch provide a 5-hop detour; but aggregation switches of

the opposite type provide an efficient 3-hop detour.

268



Chapter C

Appendix to Chapter 5

C.1 Omitted Proofs

Theorem 5.2.4. The language model is sound and complete for the relational model:

JeK = JfK ⇐⇒ ∀i.RiJeK = RiJfK

Proof. Recall from Remark 5.2.1 that there is a language-preserving map φ from GKAT

to KAT expressions. As with GKAT’s language model, GKAT’s relational model is inherited

from KAT; that is, RiJ−K = RKAT
i J−K ◦ φ. Thus, the claim follows by Kozen and Smith

[96], who showed the equivalent of Theorem 5.2.4 for KAT:

KJeK = KJfK ⇐⇒ ∀i.RKAT
i JeK = RKAT

i JfK.

Lemma C.1.1. PiJeK is a well-defined subprobability kernel. In particular, PiJ(e+b 1)
n ·

bK(σ)(σ′) increases monotonically in n and the limit for n→∞ exists.

Proof. We begin by showing the first claim by well-founded induction on ≺, the smallest

partial order subsuming the subterm order and satisfying

(e+b 1)
n · b ≺ e(b)

for all e, b, n. The claim is obvious except when e = f (b). In that case, we have by

induction hypothesis that Fn := PiJ(f +b 1)
n · bK(σ)(σ′) is well defined and bounded

269



above by 1 for all n. To establish that limn→∞ Fn exist and is also bounded above by 1, it

then suffices to show the claim that Fn increases monotonically in n.

If Fn = 0 then Fn+1 ≥ Fn holds trivially, so assume Fn > 0. This implies that

σ′ ∈ sat†(b). Thus

Fn+1 = PiJ(f +b 1)
n+1 · bK(σ)(σ′) (def.)

= PiJ(f +b 1)
n+1K(σ)(σ′) (σ′ ∈ sat†(b))

=
∑

σ′′PiJ(f +b 1)
nK(σ)(σ′′) · PiJf +b 1K(σ′′)(σ′) (def.)

≥ PiJ(f +b 1)
nK(σ)(σ′) · PiJf +b 1K(σ′)(σ′) (nonnegativity)

= PiJ(f +b 1)
nK(σ)(σ′) (σ′ ∈ sat†(b))

= Fn

Theorem 5.2.7. The language model is sound and complete for the probabilistic model:

JeK = JfK ⇐⇒ ∀i.PiJeK = PiJfK

Proof. By mutual implication.

⇒: For soundness, we will define a map κi : GS → State → D(State) that interprets

guarded strings as sub-Markov kernels, and lift it to languages via pointwise

summation:

κi(L) :=
∑
w∈L

κi(w)

To establish the claim, we will then show the following equality:

PiJ−K = κi ◦ J−K (C.1)

We define κi : GS→ State→ D(State) inductively as follows:

κi(α)(σ) := [σ ∈ sat†(α)] · δσ

κi(αpw)(σ)(σ
′) := [σ ∈ sat†(α)] ·

∑
σ′′

eval(p)(σ)(σ′′) · κi(w)(σ
′′)(σ)

270



To prove Equation (C.1), it suffices to establish the following equations:

κi(JpK) = eval(p) (C.2)

κi(JbK)(σ) = [σ ∈ sat†(b)] · δσ (C.3)

κi(Je · fK)(σ)(σ′) =
∑
σ′′

κi(JeK)(σ)(σ′′) · κi(JfK)(σ′′)(σ′) (C.4)

κi(Je+b fK)(σ) = [σ ∈ sat†(b)] · κi(JeK)(σ) + [σ ∈ sat†(b)] · κi(JfK)(σ) (C.5)

From there, Equation (C.1) follows by a straightforward well-founded induction

on ≺, the partial from the proof of Lemma C.1.1.

For Equation (C.2), we have

κi(JpK)(σ)(σ′) =
∑
α,β

κi(αpβ)(σ)(σ
′)

=
∑

α,β,σ′′

[σ ∈ sat†(α)] · eval(p)(σ)(σ′′) · [σ′′ ∈ sat†(β)] · δσ′(σ′′)

=
∑
α,β

[σ ∈ sat†(α)] · eval(p)(σ)(σ′) · [σ′ ∈ sat†(β)]

= eval(p)(σ)(σ′),

where the last line follows because {sat†(b) | b ∈ BExp} ⊆ 2State is a Boolean algebra

of sets with atoms sat†(α), α ∈ At, meaning that

State =
⊎
α∈At

sat†(α) and thus
∑
α

[σ ∈ sat†(α)] = 1.

For Equation (C.3), we have

κi(JbK)(σ) =
∑
α≤b

κi(α)(σ) =
∑
α≤b

[σ ∈ sat†(α)] · δσ = [σ ∈
⊎
α≤b

sat†(α)] · δσ

= [σ ∈ sat†(b)] · δσ.

For Equation (C.4), we need the following auxiliary facts:

271



(A1) κi(αx)(σ)(σ
′) = [σ ∈ sat†(α)] · κi(αx)(σ)(σ

′)

(A2) κi(xα)(σ)(σ
′) = [σ′ ∈ sat†(α)] · κi(xα)(σ)(σ

′)

(A3) κi(xαy)(σ)(σ
′) =

∑
σ′′ κi(xα)(σ)(σ

′′) · κi(αy)(σ
′′)(σ′)

(A4) JeK ⋄ JfK ∼= {(α, xα, αy) | α ∈ At, xα ∈ JeK, αy ∈ JfK}

Fact (A1) is immediate by definition of κi, and facts (A2) and (A3) follow by

straightforward inductions on |x|. We defer the proof of (A4) to Lemma C.1.2. We

can then compute:

κi(Je · fK)(σ)(σ′)

=
∑

w∈JeK⋄JfK

κi(w)(σ)(σ
′)

=
∑
α∈At

∑
xα∈JeK

∑
αy∈JfK

κi(xαy)(σ)(σ
′) (by A4)

=
∑
α∈At

∑
xα∈JeK

∑
αy∈JfK

∑
σ′′

κi(xα)(σ)(σ
′′) · κi(αy)(σ

′′)(σ′) (by A3)

=
∑
σ′′

∑
α,β∈At

∑
xα∈JeK

∑
αy∈JfK

[α = β] · κi(xα)(σ)(σ
′′) · κi(βy)(σ

′′)(σ′)

and, observing that

κi(xα)(σ)(σ
′′) · κi(βy)(σ

′′)(σ′) ̸= 0

=⇒ σ′′ ∈ sat†(α) ∧ σ′′ ∈ sat†(β) (by A1 and A2)

=⇒ σ′′ ∈ sat†(α · β) (Boolean algebra)

=⇒ α = β (α, β ∈ At)

we obtain Equation (C.4):

κi(Je · fK)(σ)(σ′) =
∑
σ′′

∑
α,β∈At
xα∈JeK
βy∈JfK

κi(xα)(σ)(σ
′′) · κi(βy)(σ

′′)(σ′)

=
∑
σ′′

κi(JeK)(σ)(σ′′) · κi(JfK)(σ′′)(σ′).

272



For Equation (C.5), we need the following identity (for all α, x, b, σ):

[α ≤ b] · κi(αx)(σ) = [σ ∈ sat†(b)] · κi(αx)(σ) (C.6)

Using A1, it suffices to show the equivalence

α ≤ b ∧ σ ∈ sat†(α) ⇐⇒ σ ∈ sat†(b) ∧ σ ∈ sat†(α)

The implication from left to right follows directly by monotonicity of sat†. For the

implication from right to left, we have that either α ≤ b or α ≤ b. Using again

monotonicity of sat†, the possibility α ≤ b is seen to cause a contradiction.

With Identity (C.6) at our disposal, Equation (C.5) is easy to establish:

κi(Je+b fK)(σ)

=
∑

w∈Je+bfK

κi(w)(σ)

=
∑

αx∈JeK

[α ≤ b] · κi(αx)(σ) +
∑

βy∈JfK

[α ≤ b] · κi(βy)(σ)

=
∑

αx∈JeK

[σ ∈ sat†(b)] · κi(αx)(σ) +
∑

βy∈JfK

[σ ∈ sat†(b)] · κi(βy)(σ)

= [σ ∈ sat†(b)] · κi(JeK)(σ) + [σ ∈ sat†(b)] · κi(JfK)(σ)

This concludes the soundness proof.

⇐: For completeness, we will exhibit an interpretation i over the state space GS such

that

JeK = {αx ∈ GS | PiJeK(α)(αx) ̸= 0}. (C.7)

Define i := (GS, eval, sat), where

eval(p)(w) := Unif({wpα | α ∈ At}) sat(t) := {xα ∈ GS | α ≤ t}

We need two auxiliary observations:

273



(A1) α ∈ sat†(b) ⇐⇒ α ∈ JbK

(A2) Monotonicity: PiJeK(v)(w) ̸= 0 =⇒ ∃x.w = vx.

They follow by straightforward inductions on b and e, respectively. To establish

Equation (C.7), it suffices to show the following equivalence for all x, y ∈ (At ∪ Σ)∗:

PiJeK(xα)(xαy) ̸= 0 ⇐⇒ αy ∈ JeK

We proceed by well-founded induction on the ordering ≺ on expressions from the

proof of Lemma C.1.1:

• For e = b, we use fact (A1) to derive that

PiJbK(xα) = [α ∈ sat†(b)] · δxα = [α ∈ JbK] · δxα.

Thus we have

PiJbK(xα)(xαy) ̸= 0 ⇐⇒ y = ε ∧ α ∈ JbK ⇐⇒ αy ∈ JbK.

• For e = p, we have that

PiJpK(xα) = Unif({xαpβ | β ∈ At}).

It follows that

PiJpK(xα)(xαy) ̸= 0 ⇐⇒ ∃β. y = pβ ⇐⇒ αy ∈ JpK.

• For e+b f , we have that

PiJe+b fK(xα)(xαy) =

PiJeK(xα)(xαy) if α ∈ sat†(b)

PiJfK(xα)(xαy) if α ∈ sat†(b)

274



We will argue the case α ∈ sat†(b) explicitly; the argument for the case

α ∈ sat†(b) is analogous. We compute:

PiJe+b fK(xα)(xαy) ̸= 0 ⇐⇒ PiJeK(xα)(xαy) ̸= 0 (premise)

⇐⇒ αy ∈ JeK (ind. hypothesis)

⇐⇒ αy ∈ JbK ⋄ JeK (A1 and premise)

⇐⇒ αy ∈ Je+b fK (A1 and premise)

• For e · f , recall that

PiJe · fK(xα)(xαy) =
∑
w

PiJeK(xα)(w) · PiJeK(w)(xαy).

Thus,

PiJe · fK(xα)(xαy) ̸= 0

⇐⇒ ∃w. PiJeK(xα)(w) ̸= 0 ∧ PiJeK(w)(xαy) ̸= 0 (arg. above)

⇐⇒ ∃z. PiJeK(xα)(xαz) ̸= 0 ∧ PiJfK(xαz)(xαy) ̸= 0 (A2)

⇐⇒ ∃z. αz ∈ JeK ∧ PiJfK(xαz)(xαy) ̸= 0 (ind. hypothesis)

⇐⇒ ∃z, β. zβ ∈ JeK ∧ PiJfK(xzβ)(xαy) ̸= 0 (A2)

⇐⇒ ∃z, z′, β. zβ ∈ JeK ∧ PiJfK(xzβ)(xzβz′) ̸= 0 ∧ αy = zβz′ (A2)

⇐⇒ ∃z, z′, β. zβ ∈ JeK ∧ βz′ ∈ JfK ∧ αy = zβz′ (ind. hypothesis)

⇐⇒ αy ∈ Je · fK (def. J−K, ⋄)

• For e∗, recall that

PiJe∗K(xα)(xαy) = lim
n→∞

PiJ(e+b 1)
n · bK(xα)(xαy)

275



Since this is the limit of a monotone sequence by Lemma C.1.1, it follows that

PiJe∗K(xα)(xαy) ̸= 0

⇐⇒ ∃n. PiJ(e+b 1)
n · bK(xα)(xαy) ̸= 0 (arg. above)

⇐⇒ ∃n. αy ∈ J(e+b 1)
n · bK (ind. hypothesis)

⇐⇒ ∃m. αy ∈ J(be)m · bK (to be argued)

⇐⇒ αy ∈ Je(b)K (def. J−K)

The penultimate step is justified by the identity

J(e+b 1)
n · bK =

n⋃
m=0

J(be)m · bK, (C.8)

which we establish by induction on n ≥ 0:

The case n = 0 is trivial. For n > 0, we have the following KAT equivalence:

(be+ b)
n · b ≡ (be+ b) · (be+ b)

n−1 · b

≡ (be+ b) ·
n−1∑
m=0

(be)m · b (ind. hypothesis)

≡
n−1∑
m=0

(be) · (be)m · b+
n−1∑
m=0

b · (be)m · b

≡
n∑

m=1

(be)m · b+ b ≡
n∑

m=0

(be)m · b,

where the induction hypothesis yields the KAT equivalence

(be+ b)
n−1 · b ≡

n−1∑
m=0

(be)m · b

thanks to completeness of the KAT axioms for the language model. The claim

follows by soundness of the KAT axioms.

This concludes the proof of Theorem 5.2.7.

Lemma C.1.2. For deterministic languages L,K ∈ L, we have the following isomorphism:

L ⋄K ∼= {(α, xα, αy) | α ∈ At, xα ∈ L, αy ∈ K}

276



Proof. We clearly have a surjective map

(α, xα, yα) 7→ xαy

from right to left. To see that this map is also injective, we show that for all x1α, x2β ∈ L

and αy1, βy2 ∈ K satisfying x1αy1 = x2βy2, we must have (α, x1α, αy2) = (β, x2β, βy2).

This is obvious when |x1| = |x2|, so assume |x1| ≠ |x2|. We will show that this is

impossible.

W.l.o.g. we have |x1| < |x2|. By the assumed equality, it follows that x2 must be of

the form x2 = x1αz for some z, and further zy1 = βy2. Now consider the language

Lx1
:= {w ∈ GS | x1w ∈ L}.

The language is deterministic, and it contains both α and αzβ; but the latter contradicts

the former.

Theorem 5.3.3 (Soundness). The GKAT axioms are sound for the language model:

e ≡ f =⇒ JeK = JfK.

Proof. Formally, the proof proceeds by induction on the construction of ≡ as a congru-

ence. Practically, it suffices to verify soundness of each rule—the inductive cases of the

congruence are straightforward because of how J−K is defined.

(U1) For e+b e ≡ e, we derive

Je+b eK = JeK +JbK JeK (Def. J−K)

= JbK ⋄ JeK ∪ JbK ⋄ JeK (Def. +B)

= (JbK ∪ JbK) ⋄ JeK (Def. ⋄)

= At ⋄ JeK (Def. B)

= JeK (Def. ⋄)

277



(U2) For e+b f ≡ f +b e, we derive

Je+b fK = JeK +JbK JfK (Def. J−K)

= JbK ⋄ JeK ∪ JbK ⋄ JfK (Def. +B)

= JbK ⋄ JfK ∪ JbK ⋄ JeK (Def. ∪)

= JbK ⋄ JfK ∪ JbK ⋄ JeK (Def. J−K, B)

= JfK +JbK JeK (Def. +B)

= Jf +b eK (Def. J−K)

(U3) For (e+b f) +c g ≡ e+bc (f +c g), we derive

J(e+b f) +c gK = JcK ⋄ (JbK ⋄ JeK ∪ JbK ⋄ JfK) ∪ JcK ⋄ JgK (Def. J−K)

= JbK ⋄ JcK ⋄ JeK ∪ JbK ⋄ JcK ⋄ JfK ∪ JcK ⋄ JgK (Def. ⋄)

= JbcK ⋄ JeK ∪ JbcK ⋄ (JcK ⋄ JfK ∪ JcK ⋄ JgK) (Def. J−K, ⋄)

= JeK +JbcK (JfK +JcK JgK) (Def. +B)

= Je+bc (f +c g)K (Def. J−K)

(U4) For e+b f ≡ be+b f , we derive

Je+b fK = JeK +JbK JfK (Def. J−K)

= JbK ⋄ JeK ∪ JbK ⋄ JfK (Def. +B)

= JbK ⋄ (JbK ⋄ JeK) ∪ JbK ⋄ JfK (Def. ⋄)

= (JbK ⋄ JeK) +JbK JfK (Def. +B)

= Jbe+b fK (Def. J−K)

278



(U5) For (e+b f) · g ≡ eg +b fg, we derive

J(e+b f) · gK = (JeK +JbK JfK) ⋄ JgK (Def. J−K)

= (JbK ⋄ JeK ∪ JbK ⋄ JfK) ⋄ JgK (Def. +B)

= (JbK ⋄ JeK) ⋄ JgK ∪ (JbK ⋄ JfK) ⋄ JgK (Def. ⋄)

= JbK ⋄ (JeK ⋄ JgK) ∪ JbK ⋄ (JfK ⋄ JgK) (Def. ⋄)

= (JeK ⋄ JgK) +JbK (JfK ⋄ JgK) (Def. ⋄)

= Jeg +b fgK (Def. J−K)

(S1) For (e · f) · g ≡ e · (f · g), we derive

J(e · f) · gK = (JeK ⋄ JfK) ⋄ JgK (Def. J−K)

= JeK ⋄ (JfK ⋄ JgK) (Def. ⋄)

= Je · (f · g)K (Def. J−K)

(S2) For 0 · e ≡ 0, we derive

J0 · eK = J0K ⋄ JeK (Def. J−K)

= ∅ ⋄ JeK (Def. J−K)

= ∅ (Def. ⋄)

= J0K (Def. J−K)

(S3) The proof for e · 0 ≡ 0 is similar to the above.

(S4) For 1 · e ≡ e, we derive

J1 · eK = J1K ⋄ JeK (Def. J−K)

= At ⋄ JeK (Def. J−K)

= JeK (Def. ⋄)

279



(S5) The proof for e · 1 ≡ e is similar to the above.

(W1) For e(b) ≡ ee(b) +b 1, we derive

Je(b)K = JeK(JbK) (Def. J−K)

=
⋃
n≥0

(JbK ⋄ JeK)n ⋄ JbK (Def. L(B))

= JbK ⋄ J1K ∪ JbK ⋄ JeK ⋄
⋃
n≥0

(JbK ⋄ JeK)n ⋄ JbK (Def. ⋄, Ln,
⋃

)

= JbK ⋄ J1K ∪ JbK ⋄ JeK ⋄ Je(b)K (Def. L(B))

= Je · e(b) +b 1K (Def. J−K, +B)

280



(W2) For (ce)(b) ≡ (e+c 1)
(b), we first argue that if w ∈ (JbK ⋄ JcK ⋄ JeK ∪ JcK)

n
for some n,

then w ∈ (JbK ⋄ JcK ⋄ JeK)m for some m ≤ n, by induction on n. In the base, where

n = 0, we have w ∈ At; hence, the claim holds immediately. For the inductive step,

let n > 0 and write

w = w0 ⋄ w′ w0 ∈ JbK ⋄ JcK ⋄ JeK ∪ JcK w′ ∈ (JbK ⋄ JcK ⋄ JeK ∪ JcK)
n−1

By induction, we know that w′ ∈ (JbK ⋄ JcK ⋄ JeK)m
′

for m′ ≤ n − 1. If w0 ∈ JcK,

then w = w′, and the claim goes through if we choose m = m′. Otherwise, if

w0 ∈ JbK ⋄ JcK ⋄ JeK, then

w = w0 ⋄ w ∈ JbK ⋄ JcK ⋄ JeK ⋄ (JbK ⋄ JcK ⋄ JeK)m
′
= (JbK ⋄ JcK ⋄ JeK)m

′+1

and thus the claim holds if we choose m = m′ + 1. Using this, we derive

J(ce)(b)K = JceK(JbK) (Def. J−K)

=
⋃
n≥0

(JbK ⋄ JcK ⋄ JeK)n ⋄ JbK (Def. L(B))

=
⋃
n≥0

(JbK ⋄ JcK ⋄ JeK ∪ JcK)
n
⋄ JbK (above derivation)

= (JcK ⋄ JeK ∪ JcK ⋄ J1K)
(JbK)

(Def. L(B), ⋄, J−K)

= (JeK +JcK J1K)(JbK) (Def. +B)

= J(e+c 1)
(b)K (Def. J−K)

This completes the proof.

Theorem 5.3.7 (Fundamental Theorem). For all GKAT programs e, the following equality

holds:

e ≡ 1 +E(e) D(e), where D(e) := +
α : Dα(e)=(pα,eα)

pα · eα. (5.1)

Proof. By induction on e. For a primitive action p, Dα(p) = (p, 1), for all α ∈ At, and

281



E(p) = 0. Then

p
U7≡ 1 +0 p

Lem.C.2.3≡ 1 +0 +
α≤1

α · p · 1 = 1 +E(p) +
α : Dα(e)=(pα,eα)

pα · eα.

For a primitive test c, Dα(c) = [α ≤ c] and E(c) = c. Then

c
U6≡ 1 +c 0 = 1 +E(c) +

α : Dα(e)=(pα,eα)

pα · eα.

For a conditional e1 +c e2, we have inductively:

ei ≡ 1 +E(ei) +
α : Dα(ei)=(pα,eα)

pα · eα, i ∈ {1, 2}. (C.9)

Then

e1 +c e2 ≡

(
1 +E(e1) +

α : Dα(e1)=(pα,eα)

pα · eα

)
+c

(
1 +E(e2) +

α : Dα(e2)=(pα,eα)

pα · eα

)
(Eq. (C.9))

= 1 +E(e1)+cE(e2)

(
+

α : Dα(e1)=(pα,eα)

pα · eα +c +
α : Dα(e1)=(pα,eα)

pα · eα

)
(skew assoc.)

= 1 +E(e1+ce2) +
α : Dα(e1+ce2)=(pα,eα)

pα · eα. (def Dα(e1 +c e2))

282



For sequential composition e1 · e2, suppose e1 and e2 are decomposed as in (C.9).

e1 · e2

≡

(
1 +E(e1) +

α : Dα(e1)=(pα,eα)

pα · eα

)
· e2 (Eq. (C.9))

= e2 +E(e1) +
α : Dα(e1)=(pα,eα)

pα · eα · e2 (right distri. U5)

=

(
1 +E(e2) +

α : Dα(e2)=(pα,eα)

pα · eα

)
+E(e1) +

α : Dα(e1)=(pα,eα)

pα · eα · e2 (Eq. (C.9))

= 1 +E(e1)E(e2)

((
+

α : Dα(e2)=(pα,eα)

pα · eα

)
+E(e1)

(
+

α : Dα(e1)=(pα,eα)

pα · eα · e2

))
(skew assoc. U3)

= 1 +E(e1)E(e2) +
α :

Dα(e1)=(pα,eα)
Dα(e2)=(pα,eα)

(
pα · eα +E(e1) pα · eα · e2

)
(skew assoc. +)

= 1 +E(e1e2) +
α : Dα(e1e2)=(pα,eα)

pα · eα (def E(e1 · e2) and Dα(e1 · e2))

Finally, for a while loop e(c) we will use Lemma 5.3.9 (Productive Loop):

e(c) ≡ (D(e))(c) (Lemma 5.3.9)

≡ 1 +c D(e) · (D(e))(c) (W1 and U2)

≡ 1 +c

(
+

α : Dα(e)=(pα,xα)

pα · xα

)
e(c) (Lemma 5.3.9 and def. of D(e))

≡ 1 +c

(
+

α : Dα(e)=(pα,xα)

pα · xα · e(c)
)

(U5)

= 1 +E(e(c)) +
α : Dα(e(c))=(pα,eα)

pα · eα. (Def. D(e(c)) and E(e(c)) = c)

283



Lemma 5.3.8. Let e be an expression. Then its components E(e) and D(e) satisfy the

following identities:

E(D(e)) ≡ 0 E(e) ·D(e) ≡ D(e) E(e) · e ≡ D(e)

Proof.

E(D(e)) = E

(
+

α : Dα(e)=(pα,eα)

pα · eα

)
=

∑
α : Dα(e)=(pα,eα)

E(pα · eα) = 0

E(e) ·D(e) = E(e) ·

(
+

α : Dα(e)=(pα,eα)

pα · eα

)
Lem C.2.2≡ +

α :
Dα(e)=(pα,eα)

α≤E(e)

pα · eα
∗
= D(e)

E(e) · e FT≡ E(e) · (1 +E(e) D(e))
U8≡ D(e)

Note that for * we use the observation that for all α such that Dα(e) = (pα, eα) it is

immediate that α ̸≤ E(e) and hence the condition α ≤ E(e) is redundant.

Lemma 5.3.10. The facts in Figure 5.2 are derivable from the axioms.

Proof. We start by deriving the remaining facts for guarded union.

(U3’) For e+b (f +c g) ≡ (e+b f) +b+c g, we derive

e+b (f +c g) ≡ (g +c f) +b e (U2)

≡ g +bc (f +b e) (U3)

≡ g +b+c (f +b e) (Boolean algebra)

≡ (e+b f) +b+c g (U2)

(U4’) For e+b f ≡ e+b bf , we derive

e+b f ≡ f +b e (U2)

≡ bf +b e (U4)

≡ e+b bf (U2, Boolean algebra)

284



(U5’) For b · (e+b cf) ≡ be+c bf , we derive

b(e+c f) ≡ b · (f +c e) (U2)

≡ ((b+ c)(b+ c))(f +c e) (Boolean algebra)

≡ (b+ c)((b+ c)(f +c e)) (S1)

≡ (b+ c)((f +c e) +b+c 0) (U6)

≡ (b+ c)(f +c (e+b 0)) (U3’)

≡ (b+ c)((e+b 0) +c f) (U2)

≡ (b+ c)(be+c f) (U6)

≡ (be+c f) +b+c 0 (U6)

≡ be+c (f +b 0) (U3’)

≡ be+c bf (U6)

(U7) For e+0 f ≡ f , we derive

e+0 f ≡ (0 · e) +0 f (U4)

≡ 0 +0 f (S2)

≡ (0 · f) +0 f (S2)

≡ f +0 f (U4)

≡ f (U1)

(U8) For b · (e+b f) ≡ be, we derive

b(e+b f) ≡ be+b bf (U5’)

≡ be+b bbf (U4’)

≡ be+b 0f (Boolean algebra)

≡ be+b 0 (S2)

≡ be (U6)

285



Next, we derive the remaining loop facts.

(W4) For e(b) ≡ e(b)b, we derive

e(b) ≡ (D(e))(b) (Productive loop lemma)

≡ D(e)(D(e))(b) +b 1 (W1)

≡ D(e)(D(e))(b) +b b (U4’)

≡ (D(e))(b)b (W3)

≡ e(b)b (Productive loop lemma)

(W4’) For e(b) ≡ (be)(b), we derive

e(b) ≡ (D(e))(b) (Productive loop lemma)

≡ D(e)(D(e))(b) +b 1 (W1)

≡ b ·D(e)(D(e))(b) +b 1 (U4)

≡ (b ·D(e))(b) (W3)

≡ (D(be))(b) (Def. D)

≡ (be)(b) (Productive loop lemma)

(W5) For e(0) ≡ 1, we derive

e(0) ≡ (0 · e)(0) (W4’)

≡ 0(0) (S2)

≡ 0 · 0(0) +0 1 (W1)

≡ 0 +0 1 (S2)

≡ 1 (U7)

286



(W6) For e(1) ≡ 0, we derive

e(1) ≡ e(1) · 1 (W4)

≡ e(1) · 0 (Boolean algebra)

≡ 0 (S3)

(W6’) For b(c) ≡ c, we derive

b(c) ≡ (D(b))(c) (Productive loop lemma)

≡ 0(c) (Def. D)

≡ 0 · 0(c) +c 1 (W1)

≡ 0 +c 1 (S2)

≡ 1 +c 0 (U2)

≡ c · 1 (U6)

≡ c (Boolean algebra)

This completes the proof.

Proposition 5.4.5. If s solves X and x is a state, then Js(x)K = ℓX (x).

Proof. We show that

w ∈ Js(x)K ⇐⇒ w ∈ LX (x)

for all states x by induction on the length of w ∈ GS. We will use that w is of the form

w = αu for some α ∈ At, u ∈ (At · Σ)∗ and thus

w ∈ Js(x)K ⇐⇒ w ∈ Jα · s(x)K (def. J−K)

⇐⇒ w ∈ J⌊δX (x)(α)⌋sK (def. sol., soundness)

For w = α, we have

α ∈ J⌊δX (x)(α)⌋sK ⇐⇒ δX (x)(α) = 1 (def. ⌊−⌋ & J−K)

⇐⇒ α ∈ LX (x) (def. LX )

287



For w = αpv, we have

αpv ∈ J⌊δX (x)(α)⌋sK ⇐⇒ ∃y. δX (x)(α) = ⟨p, y⟩ ∧ v ∈ Js(y)K (def. ⌊−⌋ & J−K)

⇐⇒ ∃y. δX (x)(α) = ⟨p, y⟩ ∧ v ∈ LX (y) (induction)

⇐⇒ αpv ∈ LX (x) (def. LX )

This concludes the proof.

Lemma C.1.3. Let X = ⟨X, δX ⟩ be a G-coalgebra. A function s : X → Exp is a solution to

X if and only if for all α ∈ At and x ∈ X it holds that α · s(x) ≡ α · ⌊δX (x)(α)⌋s.

Proof. We shall use some of the observations about + from Appendix C.2.

(⇒) Let s be a solution to X ; we then derive for α ∈ At and x ∈ X that

α · s(x) ≡ α ·+
α≤1

⌊δX (x)(α)⌋s (s solves X )

≡ α · +
α≤α

⌊δX (x)(α)⌋s (Lemma C.2.2)

≡ α · ⌊δX (x)(α)⌋s (Def. +, U8)

(⇐) Suppose that for all α ∈ At and x ∈ X we have α · s(x) ≡ α · ⌊δX (x)(α)⌋s. We can

then derive

s(x) ≡ +
α≤1

s(x) (Lemma C.2.3)

≡ +
α≤1

α · s(x) (Lemma C.2.4)

≡ +
α≤1

α · ⌊δX (x)(α)⌋s (premise)

≡ +
α≤1

⌊δX (x)(α)⌋s (Lemma C.2.4)

This completes the proof.

Theorem 5.4.7 (Existence of Solutions). Any simple coalgebra admits a solution.

288



Proof. Assume X is simple. We proceed by rule induction on the simplicity derivation.

(S1) Suppose δX : X → 2At. Then

sX (x) :=
∑
{α ∈ At | δX (x)(α) = 1}

is a solution to X .

(S2) Suppose X = (Y + Z)[Y, h], where h ∈ G(Y + Z) and Y and Z are simple with

solutions sY and sZ . We need to exhibit a solution sX to X . For y ∈ Y and z ∈ Z

we define

sX (y) := sY(y) · ℓ sX (z) := sZ(z)

ℓ :=
(
+
α≤b

⌊h(α)⌋sY
)(b)
·+
α≤b

⌊h(α)⌋sZ b :=
∑
{α ∈ At | h(α) ∈ Σ× Y }

By Lemma C.1.3, it then suffices to prove that for x ∈ Y + Z and α ∈ At, we have

α · sX (x) ≡ α · ⌊δX (x)(α)⌋sX

There are two cases to distinguish.

• If x ∈ Z, then

α · sX (x) = α · sZ(x) (def. sX )

≡ α · ⌊δZ(x)(α)⌋sZ (sZ solves Z)

= α · ⌊δZ(x)(α)⌋sX (def. sX )

= α · ⌊δX (x)(α)⌋sX (def. X )

• If x ∈ Y , then we find by choice of sX and sY that

α · sX (x) = α · sY(x) · ℓ = α · ⌊δY(x)(α)⌋sY · ℓ

We distinguish three subcases:

289



– If δY(x)(α) ∈ {0} ∪ Σ× Y then δY(x)(α) = δX (x)(α) and thus

α · ⌊δY(x)(α)⌋sY · ℓ = α · ⌊δX (x)(α)⌋sY · ℓ (def. X )

≡ α · ⌊δX (x)(α)⌋sX (def. sX )

– If δY(x)(α) = 1 and h(α) ∈ Σ× Y , then α ≤ b and we can derive

α · ⌊δY(x)(α)⌋sY · ℓ ≡ α · ℓ (def. ⌊−⌋)

≡ α · ⌊h(α)⌋sY · ℓ (α ≤ b)

= α · ⌊h(α)⌋sX (def. sX )

= α · ⌊δX (x)(α)⌋sX (def. X )

– If δY(x)(α) = 1 and h(α) ̸∈ Σ× Y , then α ≤ b and we can derive

α · ⌊δY(x)(α)⌋sY · ℓ ≡ α · ℓ (def. ⌊−⌋)

≡ α · ⌊h(α)⌋sZ (α ≤ b)

= α · ⌊h(α)⌋sX (def. sX )

= α · ⌊δX (x)(α)⌋sX (def. X )

This completes the proof.

Lemma C.1.4. Let e ∈ Exp and α ∈ At. Now ιe(α) = 1 if and only if α ≤ E(e).

Proof. We proceed by induction on e. In the base, there are two cases.

• If e = b ∈ BExp, then ιe(α) = 1 if and only if α ≤ b = E(b).

• If e = p ∈ Σ, then ιe(α) = 0 and E(e) = 0.

For the inductive step, there are three cases.

• If e = f +b g, then suppose α ≤ b. In that case, ιe(α) = 1 holds if and only if

ιf (α) = 1, which by induction is true precisely when α ≤ E(f), which is equivalent

to α ≤ E(f +b g). The other case can be treated analogously.

290



• If e = f · g, then ιe(α) = 1 implies that ιf (α) = 1 and ιg(α) = 1, which means that

α ≤ E(f) and α ≤ E(g) by induction, and hence α ≤ E(e). The other implication

can be derived in a similar fashion.

• If e = f (b), then ιe(α) = 1 is equivalent to α ≤ b = E(e).

Theorem 5.4.8 (Correctness II). Let e ∈ Exp. Then X ι
e admits a solution s such that

e ≡ s(ι).

Proof. We proceed by induction on e, showing that we can construct a solution se to

Xe. For the main claim, if we then show that e ≡+α≤1⌊ιe(α)⌋se, it follows that we can

extend se to a solution s of X ι
e , by setting s(ι) = e and s(x) = se(x) for x ∈ Xe. In the

base, there are two cases.

• If e = b ∈ BExp, then we choose for se the (empty) map from Xe to Exp; this

(vacuously) makes se a solution to Xe. For the second part, we can derive using

Lemmas C.2.3 and C.2.4:

b ≡ +
α≤1

b ≡ +
α≤1

αb ≡ +
α≤1

α · [α ≤ b] ≡ +
α≤1

[α ≤ b] ≡ +
α≤1

⌊ιb(α)⌋se

• If e = p ∈ Σ, then we choose se(∗) = 1. To see that se is a solution to Xe, note by

Lemma C.2.3:

se(∗) = 1 ≡ +
α≤1

1 ≡ +
α≤1

⌊δp(∗)(α)⌋se

For the second part, derive as follows, using the same Lemma:

e = p ≡ +
α≤1

p ≡ +
α≤1

p · se(∗) ≡ +
α≤1

⌊ιp(α)⌋se

For the inductive step, there are three cases.

• If e = f+bg, then by induction we have solutions sf and sg to Xf and Xg respectively.

We now choose se as follows:

se(x) =

sf (x) x ∈ Xf

sg(x) x ∈ Xg

291



To see that se is a solution, we use Lemma C.1.3. Suppose x ∈ Xf ; we derive for

α ∈ At that

α · ⌊δe(x)(α)⌋se ≡ α · ⌊δf (x)(α)⌋se (def. δe)

≡ α · ⌊δf (x)(α)⌋sf (def. se)

≡ α · sf (x) (induction)

≡ α · se(x) (def. se)

The case where x ∈ Xg is similar. For the second part of the claim, we derive

e = f +b g

≡
(
+
α≤1

⌊ιf (α)⌋sf
)
+b

(
+
α≤1

⌊ιg(α)⌋sg
)

(induction)

≡
(
b ·+

α≤1

⌊ιf (α)⌋sf
)
+b

(
b ·+

α≤1

⌊ιg(α)⌋sg
)

(U4, U4’)

≡
(
+
α≤b

⌊ιf (α)⌋sf
)
+b

(
+
α≤b

⌊ιg(α)⌋sg
)

(Lemma C.2.2)

≡
(
+
α≤b

⌊ιe(α)⌋se
)
+b

(
+
α≤b

⌊ιe(α)⌋se
)

(def. ιe)

≡
(
b ·+

α≤1

⌊ιe(α)⌋se
)
+b

(
b ·+

α≤1

⌊ιe(α)⌋se
)

(Lemma C.2.2)

≡
(
+
α≤1

⌊ιe(α)⌋se
)
+b

(
+
α≤1

⌊ιe(α)⌋se
)

(U4, U4’)

≡
(
+
α≤1

⌊ιe(α)⌋se
)

(U1)

The case where α ≤ b follows similarly.

• If e = f · g, then by induction we have solutions sf and sg to Xf and Xg respectively.

We now choose se as follows:

se(x) =

sf (x) · g x ∈ Xf

sg(x) x ∈ Xg

To see that se is a solution to Xe, we use Lemma C.1.3; there are three cases to

consider.

292



– If x ∈ Xf and δf (x)(α) = 1, then we can derive

α · ⌊δe(x)(α)⌋se ≡ α · ⌊ιg(α)⌋se (def. δe)

≡ α · ⌊ιg(α)⌋sg (def. se)

≡ α · g (induction)

≡ α · ⌊δf (x)(α)⌋sf · g (premise)

≡ α · sf (x) · g (induction)

≡ α · se(x) (def. se)

– If x ∈ Xf and δf (x)(α) ̸= 1, then we can derive

α · ⌊δe(x)(α)⌋se ≡ α · ⌊δf (x)(α)⌋se (def. δe)

≡ α · ⌊δf (x)(α)⌋sf · g (premise)

≡ α · sf (x) · g (induction)

≡ α · se(x) (def. se)

– If x ∈ Xg, then we can derive

α · ⌊δe(x)(α)⌋se ≡ α · ⌊δg(x)(α)⌋se (def. δe)

≡ α · ⌊δg(x)(α)⌋sg (def. se)

≡ α · sg(x) (induction)

≡ α · se(x) (def. se)

For the second claim, suppose ιf (α) = 1; we then derive

α · f · g ≡ α · ⌊ιf (α)⌋sf · g (induction)

≡ α · g (premise)

≡ α · ⌊ιg(α)⌋sg (induction)

≡ α · ⌊ιe(α)⌋se (def. ιe)

293



Otherwise, if ιf (α) ̸= 1, then we derive

α · f · g ≡ α · ⌊ιf (α)⌋sf · g (induction)

≡ α · ⌊ιf (α)⌋se (def. se)

≡ α · ⌊ιe(α)⌋se (def. ιe)

From the above and Lemma C.2.3 we can conclude that e = f · g ≡+α≤1⌊ιe(α)⌋se .

• If e = f (b), then by induction we have a solution sf to Xf . We now choose se by

setting se(x) = sf (x) · e. To see that se is a solution to Xe, we use Lemma C.1.3;

there are two cases:

– If δf (x)(α) = 1, then we can derive

α · ⌊δe(x)(α)⌋se ≡ α · ⌊ιe(α)⌋se (def. δe)

≡ α · e (induction)

≡ α · ⌊δf (x)(α)⌋sf · e (premise)

≡ α · sf (x) · e (induction)

≡ α · se(x) (def. se)

– Otherwise, if δf (x)(α) ̸= 1, then we can derive

α · ⌊δe(x)(α)⌋se ≡ α · ⌊δf (x)(α)⌋se (def. δe)

≡ α · ⌊δf (x)(α)⌋sf · e (premise)

≡ α · sf (x) · e (induction)

≡ α · se(x) (def. se)

For the second part of the claim, we consider three cases:

294



– If α ≤ b and ιf (α) = 1, then derive

α · e ≡ α · (1 +E(f) f)
(b) (Theorem 5.3.7)

≡ α · (E(f) · f)
(b)

(U2, W2)

≡ α · (E(f) · f · (E(f) · f)
(b)

+b 1) (W1)

≡ α · E(f) · f · e (α ≤ b, U8)

≡ 0 (Lemma C.1.4)

≡ α · ⌊ιe(α)⌋se (def. ιe)

– If α ≤ b and ιf (α) ̸= 1, then we derive

α · e ≡ α · (ff (b) +b 1) (W1)

≡ α · ff (b) (α ≤ b, U8)

≡ α · ⌊ιf (α)⌋sf · e (induction)

≡ α · ⌊ιf (α)⌋se (premise)

≡ α · ⌊ιe(α)⌋se (def. ιe)

– Otherwise, if α ≤ b, then we derive

α · e ≡ α · (ff (b) +b 1) (W1)

≡ α (α ≤ b, U8)

≡ α · ⌊ιe(α)⌋se (def. ιe)

The claim then follows by Lemma C.2.3.

Theorem 5.6.2. The uniqueness axiom is sound in the model of guarded strings: given

a system of left-affine equations as in (5.4) that is Salomaa, there exists at most one

R : {x1, . . . , xn} → 2GS s.t.

R(xi) =

( ⋃
1≤j≤n

JbijK ⋄ JeijK ⋄R(xj)

)
∪ JdiK

295



Proof. We recast this system as a matrix-vector equation of the form x = Mx+D in the

Kleene algebra with Tests of n-by-n matrices over 2GS; solutions to x in this equation are

in one-to-one correspondence with functions R as above.

We now argue that the solution is unique when the system is Salomaa. We do this

by showing that the map σ(x) = Mx + D is contractive in a certain metric on (2GS)
n,

therefore has a unique fixpoint by the Banach fixpoint theorem.

For a finite guarded string x ∈ GS, let |x| denote the number of action symbols in x.

For example, |α| = 0 and |αpβ| = 1. For A,B ⊆ GS, define

|A| =

min{|x| | x ∈ A} A ̸= ∅

∞ A = ∅
d(A,B) = 2−|A△B|

where 2−∞ = 0 by convention. One can show that d(−,−) is a metric; in fact, it

is an ultrametric, as d(A,C) ≤ max d(A,B), d(B,C), a consequence of the inclusion

A △ C ⊆ A △ B ∪B △ C. Intuitively, two sets A and B are close if they agree on short

guarded strings; in other words, the shortest guarded string in their symmetric difference

is long. Moreover, the space is complete, as any Cauchy sequence An converges to the

limit ⋃
m

⋂
n>m

An = {x ∈ GS | x ∈ An for all but finitely many n}.

For n-tuples of sets A1, . . . , An and B1, . . . , Bn, define

d(A1, . . . , An, B1, . . . , Bn) =
n

max
i=1

d(Ai, Bi).

This also gives a complete metric space (2GS)
n.

For A,B,C ⊆ GS, from Lemma C.1.5(i) and the fact |A ⋄B| ≥ |A|+ |B|, we have

|(A ⋄B) △ (A ⋄ C)| ≥ |A ⋄ (B △ C)| ≥ |A|+ |B △ C|,

from which it follows that

d(A ⋄B,A ⋄ C) ≤ 2−|A|d(B,C).

296



In particular, if Dα(e) ̸= 1 for all α, it is easily shown by induction on e that |x| ≥ 1 for

all x ∈ JeK, thus |JeK| ≥ 1, and

d(JeK ⋄B, JeK ⋄ C) ≤ 2−|JeK|d(B,C) ≤ 1
2
d(B,C). (C.10)

From Lemma C.1.5(ii) and the fact |A ∪B| = min |A|, |B|, we have

|(bA1 ∪ bA2) △ (bB1 ∪ bB2)| = |(bA1 △ bB1) ∪ (bA2 △ bB2)|

= min |bA1 △ bB1|, |bA2 △ bB2|,

from which it follows that

d(bA1 ∪ bA2, bB1 ∪ bB2) = max d(bA1, bB1), d(bA2, bB2).

Extrapolating to any guarded sum by induction,

d(
⋃
α

αAα,
⋃
α

αBα) = max
α

d(αAα, αBα). (C.11)

Putting everything together,

d(σ(A), σ(B)) = max
i

d(
⋃
j

JeijK ⋄ Aj ∪ JdiK,
⋃
j

JeijK ⋄Bj ∪ JdiK)

= max
i

(max(max
j

d(JeijK ⋄ Aj, JeijK ⋄Bj)), d(JdiK, JdiK)) by (C.11)

= max
i

max
j

d(JeijK ⋄ Aj, JeijK ⋄Bj)

≤ 1
2
maxj d(Aj, Bj) by (C.10)

= 1
2
d(A,B).

Thus the map σ is contractive in the metric d with constant of contraction 1/2. By the

Banach fixpoint theorem, σ has a unique solution.

Lemma C.1.5. Let A △ B denote the symmetric difference of A and B. We have:

(i) (A ⋄B) △ (A ⋄ C) ⊆ A ⋄ (B △ C).

297



(ii) (bA1 ∪ bA2) △ (bB1 ∪ bB2) = (bA1 △ bB1) ∪ (bA2 △ bB2).

Proof. (i) Suppose x ∈ (A ⋄ B) \ (A ⋄ C). Then x = y ⋄ z with y ∈ A and z ∈ B. But

z ̸∈ C since x ̸∈ A ⋄C, so z ∈ B \C, therefore x ∈ A ⋄ (B \C). Since x was arbitrary, we

have shown

(A ⋄B) \ (A ⋄ C) ⊆ A ⋄ (B \ C).

It follows that

(A ⋄B) △ (A ⋄ C) = (A ⋄B) \ (A ⋄ C) ∪ (A ⋄ C) \ (A ⋄B)

⊆ A ⋄ (B \ C) ∪ A ⋄ (C \B)

= A ⋄ ((B \ C) ∪ (C \B))

= A ⋄ (B △ C).

(ii) Using the facts

A = bA ∪ bA b(A △ B) = bA △ bB,

we have

A △ B = b(A △ B) ∪ b(A △ B) = (bA △ bB) ∪ (bA △ bB),

therefore

(bA1 ∪ bA2) △ (bB1 ∪ bB2)

= (b(bA1 ∪ bA2) △ b(bB1 ∪ bB2)) ∪ (b(bA1 ∪ bA2) △ b(bB1 ∪ bB2))

= (bA1 △ bB1) ∪ (bA2 △ bB2).

298



C.2 Generalized Guarded Union

In Section 5.3.2 we needed a more general type of guarded union:

Definition 5.3.5. Let Φ ⊆ At, and let {eα}α∈Φ be a set of expressions indexed by Φ. We

write

+
α∈Φ

eα =


eβ +β

(
+

α∈Φ\{β}
eα

)
β ∈ Φ

0 Φ = ∅

Like other operators on indexed sets, we may abuse notation and replace Φ by a predicate

over some atom α, with eα a function of α; for instance, we could write +α≤1 α ≡ 1.

The definition above is ambiguous in that the choice of β is not fixed. However, that

does not change the meaning of the expression above, as far as ≡ is concerned.

Lemma C.2.1. The operator + above is well-defined up-to ≡.

Proof. We proceed by induction on the number of atoms in Φ. In the base cases, when

Φ = ∅ or Φ = {α}, the claim holds immediately as the whole expression is equal to,

respectively, 0 and eα. For the inductive step, we need to show that for any β, γ ∈ Φ:

eβ +β

(
+

α∈Φ\{β}
eα

)
≡ eγ +γ

(
+

α∈Φ\{γ}
eα

)

299



We can derive

eβ +β

(
+

α∈Φ\{β}
eα

)
≡ eβ +β

(
eγ +γ

(
+

α∈Φ\{β,γ}
eα

))
(induction)

≡ (eβ +β eγ) +β+γ

(
+

α∈Φ\{β,γ}
eα

)
(U3’)

≡ (eγ +β eβ) +β+γ

(
+

α∈Φ\{β,γ}
eα

)
(U2)

≡ eγ +β(β+γ)

(
eβ +β+γ

(
+

α∈Φ\{β,γ}
eα

))
(U3)

≡ eγ +γ

(
eβ +β

(
+

α∈Φ\{β,γ}
eα

))
(Boolean algebra)

≡ eγ +γ

(
+

α∈Φ\{γ}
eα

)
(induction)

This completes the proof.

The following properties are useful for calculations with +.

Lemma C.2.2. Let b, c ∈ BExp and suppose that for every α ≤ b, we have an eα ∈ Exp. The

following then holds:

c ·+
α≤b

eα ≡ +
α≤bc

eα

Recall from above that the predicate α ≤ b is replacing the set Φ = {α | α ≤ b}.

Proof. We proceed by induction on the number of atoms below b. In the base, where

b ≡ 0, the claim holds vacuously. For the inductive step, assume the claim holds for all b′

with strictly fewer atoms. Let β ∈ At with b = β + b′ and β ̸≤ b′. There are two cases.

300



• If β ≤ c, then we derive

c ·+
α≤b

eα ≡ c ·
(
eβ +β

(
+
α≤b′

eα

))
(Def. +)

≡ c · eβ +β c ·
(
+
α≤b′

eα

)
(U5’)

≡ c · eβ +β

(
+

α≤b′c

eα

)
(induction)

≡ eβ +β

(
+

α≤b′c

eα

)
(U4, Boolean algebra)

≡ +
α≤bc

eα (Def. +, Boolean algebra)

where in the last step we use b+ c ≡ β + b′c and β ̸≤ b′c.

• If β ̸≤ c, then we derive

c ·+
α≤b

eα ≡ c ·
(
eβ +β

(
+
α≤b′

eα

))
(Def. +)

≡ c ·
(
+
α≤b′

eα

)
(U8, Boolean algebra)

≡ +
α≤b′c

eα (induction)

≡ +
α≤bc

eα (Boolean algebra)

where for the last step we use bc ≡ (b′ + β)c = b′c.

Lemma C.2.3. For all e ∈ Exp and b ∈ BExp, we have +
α≤b

e ≡ be

Proof. The proof proceeds by induction on the number of atoms below b. In the base,

where b ≡ 0, the claim holds immediately. Otherwise, assume the claim holds for all

b′ ∈ BExp with strictly fewer atoms than b. Let β ∈ At be such that b = β ∨ b′ and β ̸≤ b′.

301



We then calculate:

+
α≤b

e ≡ e+β

(
+
α≤b′

e
)

(Def. +)

≡ e+β b
′e (induction)

≡ βe+β βb
′e (U4, U4’)

≡ βbe+β βbe (Boolean algebra)

≡ be+β be (U4, U4’)

≡ be (U1)

This completes the proof.

Lemma C.2.4. Let b ∈ BExp and suppose that for α ≤ b we have an eα ∈ Exp. The

following holds:

+
α≤b

eα ≡+
α≤b

αeα

Proof. The proof proceeds by induction on the number of atoms below b. In the base,

where b ≡ 0, the claim holds immediately. Otherwise, assume that the claim holds for all

b′ ∈ BExp with strictly fewer atoms. Let β ∈ At be such that b = β ∨ b′ and β ̸≤ b′. We

then calculate:

+
α≤b

eα ≡ e+β

(
+
α≤b′

eα

)
(Def. +)

≡ βeβ +β

(
+
α≤b′

αeα

)
(U4)

≡+
α≤b

αeα (Def. +)

This completes the proof.

302


	Introduction
	Overview of Approach
	Approach 1: High-level Programming Languages
	Approach 2: Automated Verification
	Combined Approach

	Contributions
	Acknowledgments

	I Deterministic Networks
	Compilation
	Introduction
	Overview
	Local Compilation
	Global Compilation
	NetKAT Automata
	Local Program Generation

	Virtual Compilation
	Evaluation
	Related Work
	Conclusion


	II Probabilistic Networks
	Semantic Foundations
	Introduction
	Overview
	Preliminaries
	ProbNetKAT
	Cantor Meets Scott
	A DCPO on Markov Kernels
	Continuity and Semantics of Iteration
	Approximation
	Implementation and Case Studies
	Related Work
	Conclusion

	Scalable Verification
	Introduction
	Overview
	ProbNetKAT Syntax and Semantics
	Computing Stochastic Matrices
	Implementation
	Native Backend
	PRISM Backend

	Evaluation
	Case Study: Data Center Fault-Tolerance
	Related Work
	Conclusion


	III A Family of Programming Languages
	Guarded Kleene Algebra with Tests
	Introduction
	Overview: An Abstract Programming Language
	Syntax
	Semantics: Language Model
	Relational Model
	Probabilistic Model

	Axiomatization
	Some Simple Axioms
	A Fundamental Theorem
	Derivable Facts
	A Limited Form of Completeness

	Automaton Model and Kleene Theorem
	Automata and Languages
	Expressions to Automata: a Thompson Construction
	Automata to Expressions: Solving Linear Systems

	Decision Procedure
	Normal Coalgebras
	Bisimilarity for Normal Coalgebras
	Deciding Equivalence

	Completeness for the Language Model
	Systems of Left-Affine Equations
	General Completeness

	Related Work
	Conclusions and Future Directions


	IV Conclusion
	Conclusion
	Thoughts on Practical Impact
	Future Directions

	Bibliography

	V Appendix
	Appendix to Chapter 3
	Distributions over history sets do not form a Semilattice
	Non-Algebraicity
	Cantor Meets Scott
	A DCPO on Markov Kernels
	Continuity of Kernels and Program Operators and a Least-Fixpoint Characterization of Iteration
	Products and Integration
	Continuous Operations on Measures
	Continuous Kernels
	Continuous Operations on Kernels
	Iteration as Least Fixpoint

	Approximation and Discrete Measures

	Appendix to Chapter 4
	ProbNetKAT Denotational Semantics for History-free Fragment
	The CPO of distributions

	Omitted Proofs
	Background on Datacenter Topologies

	Appendix to Chapter 5
	Omitted Proofs
	Generalized Guarded Union



