
Cantor Meets Scott: 
Semantic Foundations for 

Probabilistic Networks

Steffen Smolka (Cornell) 
Praveen Kumar (Cornell) 

Nate Foster (Cornell & Barefoot) 
Dexter Kozen (Cornell) 
Alexandra Silva (UCL)

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
P
O
P
L
*

Ar
tifact

*
A
E
C



How to ensure correct behavior?

’s Wide Area Network

high level languages & automatic verification!
[Foster et al., ICFP 11], [Monsanto et al., POPL 12], [Kazemian et al., NSDI 12], 

[Voellmy et al., SIGCOMM 13],  [Khurshid et al., NSDI 13],  [Nelson et al., NSDI 14], 
 [Anderson et al., POPL 14], [Plotkin et al., POPL 16], [Becket et al., PLDI 16],  

[Subramanian et al., POPL 17], …

Assumption: network behavior is deterministic



A language for modeling & reasoning about 
networks probabilistically.

ProbNetKAT



A language for modeling & reasoning about 
networks probabilistically.

Prob    +    NetKAT
network 

primitives
probabilistic 

primitive 
p ⊕r q f:=n, dup



A language for modeling & reasoning about 
networks probabilistically.

Prob    +    Net    +    KA    +    T

2016ProbNetKAT

2013NetKAT

1996KAT

1956

regular 
expressions 

+, ⋅, *

boolean 
tests 
f=n

network 
primitives 
f:=n, dup

probabilistic 
primitives 

p ⊕r q

1847



A language for modeling & reasoning about 
networks probabilistically.

Prob    +    Net    +    KA    +    T
regular 

expressions 
+, ⋅, *

boolean 
tests 
f=n

network 
primitives 
f:=n, dup

probabilistic 
primitives 

p ⊕r q

⟦p⟧ ∈ 2H → 2H

⟦p⟧ ∈ 2H → Dist(2H)



ProbNetKAT model p,
input distribution μ 

→ traffic distribution ν = ⟦p⟧†(μ) ∈ Dist(2H)

Probabilistic Reasoning



Expected  
 Utilization?

ProbNetKAT model p,
input distribution μ 

→ traffic distribution ν = ⟦p⟧†(μ) ∈ Dist(2H)

utilization query:   Q : 2H → [0,∞]

expected utilization:   Eν[Q]

Probabilistic Reasoning



Expected  
 Utilization?

How to implement this?

Eν[Q] = ∫Q dν

continuous 
distribution 

over 2H 

Lebesgue 
Integral

Key Question: Approximation?



Key Idea

limits + continuity → approximation 

μ ∈ Dist(2H)μ1, μ2, μ3, …
converges



Key Idea

μ ∈ Dist(2H)μ1, μ2, μ3, …
converges

f(μ) ∈ Rf(μ1), f(μ2),f(μ3), …
converges

limits + continuity → approximation 



Key Idea

limits + continuity → approximation 

μ ∈ Dist(2H)μ1, μ2, μ3, …
converges

f(μ) ∈ Rf(μ1), f(μ2),f(μ3), …
converges

continuity



1) Iteration-free programs generate only finite distributions

2) Iteration may introduce continuous distributions …  
… but can be approximated by bounded iteration

3) All programs can be approximated 

Main Results



1) Iteration-free programs generate only finite distributions

2) Iteration may introduce continuous distributions …  
… but can be approximated by bounded iteration

3) All programs can be approximated 

Main Results

continuity of 
+,⋅,*, ⊕

compositionality  
of approximation



1) Iteration-free programs generate only finite distributions

2) Iteration may introduce continuous distributions …  
… but can be approximated by bounded iteration

3) All programs can be approximated 

continuity of 

∫, E[-]
4) Queries can be approximated

Main Results

continuity of 
+,⋅,*, ⊕

compositionality  
of approximation



1) Star-free programs generate only finite distributions 

2) Iteration may introduce continuous distributions …  
… but can be approximated by bounded iteration

3) All programs can be approximated 

continuity of 

∫, E[-]
4) Queries can be approximated

Main Results

continuity of 
+,⋅,*, ⊕

compositionality  
of approximation `

but different topologies give different notions 
of  limits, continuity, and approximation



Cantor Meets Scott



Topologies

Cantor Scott

μ ⊑ ν
Metric ✔ ✘

Convergence Weak Monotone

Practical Queries ✘ ✔

d(μ,ν)



Topologies

Cantor Scott

μ ⊑ ν
Metric ✔ ✘

Convergence Weak Monotone

Practical Queries ✘ ✔

d(μ,ν)`
Q : 2H → R 
Q(A) = |A| 

“network congestion”



CPOs for ProbNetKAT

If a larger set of packets (in the sense of ⊆) is input to the 
ProbNetKAT program, then the probability that a given set of 
packets occurs as a subset of the output set can only increase.  

(2H, ⊆)   
history sets

(D(2H), ⊑) 
[Saheb-Djahromi, 
Jones & Plotkin]  

distributions

(2H →D(2H), ⊑)
programs

(R, ≤)
query results

+,⋅,*,⊕, E-[-] respect this order!



Summary

→ any program is approximated to arbitrary precision 
by finite distributions!

→ any query is approximated to arbitrary precision 
by finite sums!

→ implemented in OCaml in ~300 LOC

→ convergence is monotone!



Applications



Fault Tolerance

S1

S2

S4

S3

(a)

S1

S2

S3

S4

(b)

100

101

111

110000

001

011

010

(c)

Fig. 4. Topologies used in case studies: (a) fault tolerance, (b) load balancing, and (c)
gossip protocols.

8.1 Fault Tolerance

Failures are a fact of life in real-world networks. Devices and links fail due to
factors ranging from software and hardware bugs to interference from the envi-
ronment such as loss of power or cables being severed. A recent empirical study
of data center networks by Gill et al. [14] found that failures occur frequently
and can cause issues ranging from degraded performance to service disruptions.
Hence, it it important for network operators to be able to understand the impact
of failures—e.g., they may elect to use routing schemes that divide tra�c over
many diverse paths in order to minimize the impact of any given failure.

We can encode failures in ProbNetKAT using random choice and drop: the
idiom p �d drop encodes a program that succeeds and executes p with proba-
bility d, or fails and executes drop with probability 1� d. Note that since drop
produces no packets, it accurately models a device or link that has crashed. We
can then compute the probability that tra�c will be delivered under an arbitrary
forwarding scheme.

As a concrete example, consider the topology depicted in Figure 4 (a), with
four switches connected in a diamond. Suppose that we wish to forward tra�c
from S

1

to S
4

and we know that the link between S
1

and S
2

fails with 10%
probability (for simplicity, in this example, we will assume that the switches and
all other links are reliable). What is the probability that a packet that originates
at S

1

will be successfully delivered to S
4

, as desired?

Obviously the answer to this question depends on the configuration of the
network—using di↵erent forwarding paths will lead to di↵erent outcomes! To
investigate this question, we will encode the overall behavior of the network
using several terms: a term p that encodes the local forwarding behavior of the
switches; a term t that encodes the forwarding behavior of the network topology;
and a term e that encodes the network egresses.

19

Probability of  
delivery in the 

presence of failures

S1

S2

S4

S3

(a)

S1

S2

S3

S4

(b)

100

101

111

110000

001

011

010

(c)

Fig. 4. Topologies used in case studies: (a) fault tolerance, (b) load balancing, and (c)
gossip protocols.

8.1 Fault Tolerance

Failures are a fact of life in real-world networks. Devices and links fail due to
factors ranging from software and hardware bugs to interference from the envi-
ronment such as loss of power or cables being severed. A recent empirical study
of data center networks by Gill et al. [14] found that failures occur frequently
and can cause issues ranging from degraded performance to service disruptions.
Hence, it it important for network operators to be able to understand the impact
of failures—e.g., they may elect to use routing schemes that divide tra�c over
many diverse paths in order to minimize the impact of any given failure.

We can encode failures in ProbNetKAT using random choice and drop: the
idiom p �d drop encodes a program that succeeds and executes p with proba-
bility d, or fails and executes drop with probability 1� d. Note that since drop
produces no packets, it accurately models a device or link that has crashed. We
can then compute the probability that tra�c will be delivered under an arbitrary
forwarding scheme.

As a concrete example, consider the topology depicted in Figure 4 (a), with
four switches connected in a diamond. Suppose that we wish to forward tra�c
from S

1

to S
4

and we know that the link between S
1

and S
2

fails with 10%
probability (for simplicity, in this example, we will assume that the switches and
all other links are reliable). What is the probability that a packet that originates
at S

1

will be successfully delivered to S
4

, as desired?

Obviously the answer to this question depends on the configuration of the
network—using di↵erent forwarding paths will lead to di↵erent outcomes! To
investigate this question, we will encode the overall behavior of the network
using several terms: a term p that encodes the local forwarding behavior of the
switches; a term t that encodes the forwarding behavior of the network topology;
and a term e that encodes the network egresses.

19

Utilization

Expected number of  
packets traversing 

each link

Gossip protocols

S1

S2

S4

S3

(a)

S1

S2

S3

S4

(b)

100

101

111

110000

001

011

010

(c)

Fig. 4. Topologies used in case studies: (a) fault tolerance, (b) load balancing, and (c)
gossip protocols.

8.1 Fault Tolerance

Failures are a fact of life in real-world networks. Devices and links fail due to
factors ranging from software and hardware bugs to interference from the envi-
ronment such as loss of power or cables being severed. A recent empirical study
of data center networks by Gill et al. [14] found that failures occur frequently
and can cause issues ranging from degraded performance to service disruptions.
Hence, it it important for network operators to be able to understand the impact
of failures—e.g., they may elect to use routing schemes that divide tra�c over
many diverse paths in order to minimize the impact of any given failure.

We can encode failures in ProbNetKAT using random choice and drop: the
idiom p �d drop encodes a program that succeeds and executes p with proba-
bility d, or fails and executes drop with probability 1� d. Note that since drop
produces no packets, it accurately models a device or link that has crashed. We
can then compute the probability that tra�c will be delivered under an arbitrary
forwarding scheme.

As a concrete example, consider the topology depicted in Figure 4 (a), with
four switches connected in a diamond. Suppose that we wish to forward tra�c
from S

1

to S
4

and we know that the link between S
1

and S
2

fails with 10%
probability (for simplicity, in this example, we will assume that the switches and
all other links are reliable). What is the probability that a packet that originates
at S

1

will be successfully delivered to S
4

, as desired?

Obviously the answer to this question depends on the configuration of the
network—using di↵erent forwarding paths will lead to di↵erent outcomes! To
investigate this question, we will encode the overall behavior of the network
using several terms: a term p that encodes the local forwarding behavior of the
switches; a term t that encodes the forwarding behavior of the network topology;
and a term e that encodes the network egresses.

19

Expected number of 
nodes "infected" after 

n rounds



S11

S10 S4

S8

S5
S1

S7
S3

S6
S9

S12S2
t

Topology



S11

S10 S4

S8

S5
S1

S7
S3

S6
S9

S12S2 t

ECMP, KSP, Multi, Räcke

p

Routing Algorithms



S11

S10 S4

S8

S5
S1

S7
S3

S6
S9

S12S2 t

μ

p

Demand Matrix



S11

S10 S4

S8

S5
S1

S7
S3

S6
S9

S12S2 t μp

1. Assemble ProbNetKAT Model

(p⋅t)*⋅p



S11

S10 S4

S8

S5
S1

S7
S3

S6
S9

S12S2 t μp

2. Approximate Traffic Distribution

⟦(p⋅t)*⋅p⟧1(μ)   =   ν1 



S11

S10 S4

S8

S5
S1

S7
S3

S6
S9

S12S2 t μp

2. Approximate Traffic Distribution

⟦(p⋅t)*⋅p⟧2(μ)   =   ν2 



S11

S10 S4

S8

S5
S1

S7
S3

S6
S9

S12S2 t μp

2. Approximate Traffic Distribution

⟦(p⋅t)*⋅p⟧3(μ)   =   ν3 



S11

S10 S4

S8

S5
S1

S7
S3

S6
S9

S12S2 t μp

2. Approximate Traffic Distribution

ν1 ⊑ ν2 ⊑ ν3 ⊑ ν4 ⊑ … 



S11

S10 S4

S8

S5
S1

S7
S3

S6
S9

S12S2 t μp

3. Approximate Network Metrics

Eν1[hopcount] ≤ Eν2[hopcount] ≤ … 

1 hopcount : history -> int 
2 hopcount h = List.length h



S11

S10 S4

S8

S5
S1

S7
S3

S6
S9

S12S2 t μp

S11

S10 S4

S8

S5
S1

S7
S3

S6
S9

S12S2

(a) Topology (b) Traffic matrix

(c) Max congestion (d) Throughput

(e) Max congestion (f) Throughput

(g) Path length (h) Random walk

Figure 5. Case study with Abilene: (c, d) without loss. (e, f)
with faulty links. (h) random walk in 4-cycle: all packets are
eventually delivered.

the interpreter approximates the answer through a monotonically
increasing sequence of values (Theorems 21 and 22). We used our
implementation to conduct several case studies involving proba-
bilistic reasoning about properties of a real-world network: Inter-
net2’s Abilene backbone [25]. Before presenting our case studies,
we briefly describe how we model the components of a network in
ProbNetKAT, extending the encodings from §2.

Routing. In the networking literature, a large number of traffic
engineering (TE) approaches have been explored. We built Prob-
NetKAT implementations of each of the following routing schemes:

• Equal Cost Multipath Routing (ECMP): The network uses all
least-cost paths between each source-destination pair, and maps
incoming traffic flows onto those paths randomly. Using multiple
paths generally reduces congestion and increases throughput,
but this scheme can perform poorly when multiple paths traverse
the same bottleneck link.

• k-Shortest Paths (KSP): The network uses the top k-shortest
paths between each pair of hosts, and again maps incoming
traffic flows onto those paths randomly. This approach inherits

the performance benefits of ECMP and also provides improved
fault-tolerance properties since it always spreads traffic across k
distinct paths.

• Multipath Routing (Multi): This is similar to KSP, except
that it makes an independent choice from among the k-shortest
paths at each hop rather than just once at ingress. This approach
dynamically routes around bottlenecks and failures but can use
extremely long paths—even ones containing loops.

• Oblivious Routing (Räcke): The network forwards traffic using
a pre-computed probability distribution on carefully constructed
overlays. The distribution is constructed in such a way that
guarantees worst-case congestion within a polylogarithmic factor
of the optimal scheme, regardless of the demands for traffic.

Note that all of these schemes rely on some form of randomization
and hence are probabilistic in nature.

Traffic Model. Network operators often use traffic models con-
structed from historical data to predict future performance. We built
a small OCaml tool that translates traffic models into ProbNetKAT
programs using a simple encoding. Assume that we are given a
traffic matrix (TM) that relates pairs of hosts (u, v) to the amount of
traffic that will be sent from u to v. By normalizing each TM entry
using the aggregate demand

P
(u,v) TM(u, v), we get a probability

distribution d over pairs of hosts. For a pair of source and destination
(u, v), the associated probability d(u, v) denotes the amount of traf-
fic from u to v relative to the total traffic. Assuming uniform packet
sizes, this is also the probability that a random packet generated in
the network has source u and destination v. So, we can encode a
TM as a program that generates packets according to d:

inp , �d(u,v)⇡(u,v)!

where, ⇡(u,v)! , src u ; dst v ; sw u

⇡(u,v)! generates a packet at u with source u and destination v. For
any (non-empty) input, inp generates a distribution µ on packet
histories which can be fed to the network program. For instance,
consider a uniform traffic distribution for our 4-switch example (see
Figure 1) where each node sends equal traffic to every other node.
There are twelve (u, v) pairs with u 6= v. So, d(u, v)u 6=v =

1
12 and

d(u, u) = 0. We also store the aggregate demand as it is needed to
model queries such as expected link congestion, throughput etc.

Queries. Our implementation can be used to answer probabilistic
queries about a variety of network performance properties. §2
showed an example of using a query to compute expected congestion.
We can also measure expected mean latency in terms of path length:

let path_length (h:Hist.t) : Real.t =
Real.of_int ((Hist.length h)/2 + 1)

let lift_query_avg
(q:Hist.t -> Real.t) : (HSet.t -> Real.t) =
fun hset ->
let n = HSet.length hset in
if n = 0 then Real.zero else
let sum = HSet.fold hset ⇠init:Real.zero

⇠f:(fun acc h -> Real.(acc + q h)) in
Real.(sum / of_int n)

The latency function (path length) counts the number of
switches in a history. We lift this function to sets and compute
the expectation (lift query avg) by computing the average
over all histories in the set (after discarding empty sets).

Case Study: Abilene. To demonstrate the applicability of Prob-
NetKAT for reasoning about a real network, we performed a case
study based on the topology and traffic demands from Internet2’s
Abilene backbone network as shown in Figure 5 (a). We evaluate the

Steps of Approximation

M
ax

 U
til

iz
at

io
n



Efficient implementation that scales to large networks

Our Contribution

First complete compiler pipeline for NetKAT

123 local 
policy

Local 
Compiler

Pattern Actions

dstpt=2 drop

srcpt=7 fwd 1

* fwd 2

Pattern Actions

dstpt=2 drop

srcpt=7 fwd 1

* fwd 2

Pattern Actions

dstpt=2 drop

srcpt=7 fwd 1

* fwd 2

drop-in replacement 
~ 100x speedup

network-wide 
behavior

global 
policy

Global 
Compiler

abstract 
topologies

virtual 
policy

Virtual 
Compiler

based

on

Our Contribution

First complete compiler pipeline for NetKAT

123 local 
policy

Local 
Compiler

Pattern Actions

dstpt=2 drop

srcpt=7 fwd 1

* fwd 2

Pattern Actions

dstpt=2 drop

srcpt=7 fwd 1

* fwd 2

Pattern Actions

dstpt=2 drop

srcpt=7 fwd 1

* fwd 2

drop-in replacement 
~ 100x speedup

network-wide 
behavior

global 
policy

Global 
Compiler

abstract 
topologies

virtual 
policy

Virtual 
CompilerRicher language (e.g. link capacities, queuing, etc.)

     A⇾B; @1Gbit/s

Ongoing Work

Axiomatic reasoning and a decision procedure
⊢ p ≡ q



Nate 
Foster

Dexter 
Kozen

Alexandra 
Silva

Praveen 
Kumar

Steffen 
Smolka



A continuous distribution
((π0! ⊕ π1!) • dup)*

How many paths are there?

0 1

1

1

0

0

1

1 0 1
… … … … …

execution 
≅ 

infinite path 
≅ 

random output  
∈ 2H

→ one for every r ∈ [0,1]

What’s the probability of any particular path? → 0



Taming *
Recall: ⟦p⟧ ∈ 2H → Dist(2H)

What is ⟦p*⟧?

 ⟦p*⟧(a) := μY

  X0 := a
  Xn+1 ~ ⟦p⟧(Xn)

              Y := X0 ∪ X1 ∪ X2 ∪ …

Idea:  stop executing loop after n iterations 
Yn := X0 ∪ … ∪ Xn 
⟦p*⟧(a) := “limn μYn”


