

Cantor Meets Scott: Semantic Foundations for Probabilistic Networks

Steffen Smolka (Cornell) Praveen Kumar (Cornell) Nate Foster (Cornell & Barefoot) Dexter Kozen (Cornell) Alexandra Silva (UCL)

How to ensure correct behavior?

high level languages & automatic verification! [Foster et al., ICFP 11], [Monsanto et al., POPL 12], [Kazemian et al., NSDI 12], [Voellmy et al., SIGCOMM 13], [Khurshid et al., NSDI 13], [Nelson et al., NSDI 14], [Anderson et al., POPL 14], [Plotkin et al., POPL 16], [Becket et al., PLDI 16], [Subramanian et al., POPL 17], ...

Assumption: network behavior is deterministic

ProbNetKAT

Prob + NetKAT

probabilistic primitive p⊕_rq network primitives

f:=n, dup

ProbNetKA	Г				2016
•		NetKAT			2013
		•		KAT	1996
				1956	1847
Prob	+	Net	+	KA	+ T
probabilistic primitives		network primitives		regular expressions	boolean 5 tests
$p \oplus_r q$		f:=n, dup		+, ·, *	f=n

 $\llbracket p \rrbracket \in 2^{H} \rightarrow \text{Dist}(2^{H})$

Probabilistic Reasoning

ProbNetKAT model **p**, input distribution **µ**

→ traffic distribution $\mathbf{v} = \llbracket p \rrbracket^{+}(\mu) \in \text{Dist}(2^{H})$

Probabilistic Reasoning

ProbNetKAT model **p**, input distribution **µ**

→ traffic distribution $\mathbf{v} = \llbracket p \rrbracket^{+}(\mu) \in \text{Dist}(2^{H})$

utilization query: $\mathbf{Q}: 2^{\mathsf{H}} \rightarrow [0,\infty]$

expected utilization: $E_{v}[Q]$

How to implement this?

Key Question: Approximation?

Key Idea

limits + continuity → approximation

Key Idea

limits + continuity → approximation

Key Idea

limits + **continuity** → approximation

- 1) Iteration-free programs generate only finite distributions
- 2) Iteration may introduce continuous distributions but can be approximated by bounded iteration

3) All programs can be approximated

- 1) Iteration-free programs generate only finite distributions
- 2) Iteration may introduce continuous distributions but can be approximated by bounded iteration

3) All programs can be approximated

- 1) Iteration-free programs generate only finite distributions
- 2) Iteration may introduce continuous distributions but can be approximated by bounded iteration

3) All programs can be approximated

continuity of ∫, E[-]

4) Queries can be approximated

1) Star-free programs generate only finite distributions

2) Iteration may introduce continuous distributions but can be approximated by bounded iteration

> but different topologies give different notions of limits, continuity, and approximation

> > continuity of

 $\int E[-]$

3) All programs can be approximated

4) Queries can be approximated

Cantor Meets Scott

Topologies

	Cantor	Scott
	←d(μ,ν)→	$\mu \sqsubseteq v$
Metric		X
Convergence	Weak	Monotone
Practical Queries	X	

Topologies

	Cantor	Scott				
"r	$\begin{array}{l} Q: 2^{H} \rightarrow R\\ Q(A) = A \\ \\ ``network \ congestion'' \end{array}$					
Convergence	Weak	Monotone				
Practical Queries	X					

CPOs for ProbNetKAT

If a larger set of packets (in the sense of \subseteq) is input to the ProbNetKAT program, then the probability that a given set of packets occurs as a subset of the output set can only increase.

+, \cdot , *, \oplus , **E**₋[-] respect this order!

Summary

→ any **program** is approximated to arbitrary precision by **finite distributions**!

→ any **query** is approximated to arbitrary precision by **finite sums**!

→ convergence is **monotone**!

→ implemented in OCaml in ~300 LOC

Applications

Fault Tolerance S_2 S_1 S_4 S_3

Probability of delivery in the presence of failures

Gossip protocols

Expected number of nodes "infected" after n rounds

Topology

ECMP, KSP, Multi, Räcke

Routing Algorithms

Demand Matrix

1. Assemble ProbNetKAT Model

$[[(p \cdot t)^* \cdot p]]_1(\mu) = V_1$

$[\![(p \cdot t)^* \cdot p]\!]_2(\mu) = V_2$

$\llbracket (p \cdot t)^* \cdot p \rrbracket_3(\mu) = V_3$

$V_1 \sqsubseteq V_2 \sqsubseteq V_3 \sqsubseteq V_4 \sqsubseteq \ldots$

$E_{v1}[hopcount] \le E_{v2}[hopcount] \le \dots$

1 hopcount : history -> int 2 hopcount h = List.length h

3. Approximate Network Metrics

р

Ongoing Work

Richer language (e.g. link capacities, queuing, etc.) A→B; @1Gbit/s

Efficient implementation that scales to large networks

Axiomatic reasoning and a decision procedure

 $\vdash p \equiv q$

Steffen

Smolka

Praveen

Kumar

Nate

Foster

Dexter Kozen

Alexandra Silva

A continuous distribution

 $((\pi_0! \oplus \pi_1!) \bullet \mathbf{dup})^*$

How many paths are there? \rightarrow one for every r \in [0,1]

What's the probability of any particular path? $\rightarrow 0$

laming * Recall: $[p] \in 2^{H} \rightarrow \text{Dist}(2^{H})$ What is **[**p***]**? $[[p^*]](a) := \mu_Y$ $X_0 := a$ $X_{n+1} \sim [[p]](X_n)$ $Y := X_0 \cup X_1 \cup X_2 \cup \ldots$

Idea: stop executing loop after n iterations

Y_n := X₀ υ ... υ X_n
 [[p*]](a) := "lim_n μ_{Yn}"