Probabilistic
Network Verification

Steffen Smolka
Cormell University

-




Overview:

Network Verification



Network verification has taken off!

FORWARD

NETWORKS

Microsoft Azure

Header Space Analysis: Static Checking For Networks

Peyman Kazemian George Varghese Nick McKeown
Stanford University UCSD and Yahoo! Research Stanford University
kazemian@stanford.edu varghese@cs.ucsd.edu nickm@stanford.edu
Abstract allows flexible routing. Further, new protocols for spe-

Today's networks typically carry or deploy dozens
of protocols and mechanisms simultaneously such as
MPLS, NAT, ACLs and route redistribution. Even when
individual protocols function correctlv. failures can arise

cific domains, such as data centers, WANSs and wircless.
have greatly increased the complexity of packet forward-
ing. Today, there arc over 6,000 Intemet RFCs and it is
not unusual for a switch or router to handle ten or more

Several start-ups

VERIFLOW

Deployed at big
cloud providers

iymmetry and Surgery

idrey Rybalchenko!  George Varghese®

Tatine £ 1 . |
from the ©
ing netwol
N o &S arc qlll(C common.
goal is to vely prevent potential
ures, regar . . .
tional and A Coalgebraic Decision Procedure for NetKAT R e (o,
. aters at forwar
To t_hls abstract the dataplane.
agnostic | set of rules that map
(HSA). Ot Nate Foster Dexter Kozen Matthew Milano ddresses starting with
work speel Cornell University Comell University Comell University iCo_nlml‘L_l?L\ (:\CL?’
. . putside Microsoft that
portant clf .
¢ % Which packets must be
Forwardin ges in

PR p—

il



Example: Network Verification

2 1

= Switch A Switch B Host 2




Example: Network Verification

—_ Switch A Switch B Host 2
Host 1

? "Are packets routed between hosts?"
® | '"Aressh packets dropped?"

~



Example: Network Verification

- = Switch A Switch B Host 2
Host 1

? "Are packets routed between hosts?"
9 i "Are ssh packets dropped?”

Verification Tool O

Inputs: Network config & topology + question

Outputs: "Yes" / "No" + counterexample




What's the big deal?



The Power of Verification

Guesswork that network will behave correctly



The Power of Verification

Guesswork that network will behave correctly )L

Mathematical proof of policy compliance



The Power of Verification

Guesswork that network will behave correctly .}Q

Mathematical proof of policy compliance

Consequences:



The Power of Verification

Guesswork that network will behave correctly ‘>L

Mathematical proof of policy compliance

Consequences:

+ Bugs can be found before they ever manifest



The Power of Verification

Guesswork that network will behave correctly ‘>L

Mathematical proof of policy compliance

Consequences:

+ Bugs can be found before they ever manifest
+ Can change network config with confidence



The Power of Verification

Guesswork that network will behave correctly ‘>L

Mathematical proof of policy compliance

Consequences:

+ Bugs can be found before they ever manifest
+ Can change network config with confidence
+ More robust & more efficient network



The Power of Verification

Guesswork that network will behave correctly ‘>L

Mathematical proof of policy compliance

Consequences:

+ Bugs can be found before they ever manifest
+ Can change network config with confidence
+ More robust & more efficient network

+ Your network operators can sleep better...



Example Network Properties

State of the art tools verify reachability properties:



Example Network Properties

State of the art tools verify reachability properties:

Waypointing: cvery packet traverses a firewall



Example Network Properties

State of the art tools verify reachability properties:
Waypointing: cvery packet traverses a firewall

Isolation: packets from VLLAN 1 cannot enter VVLANZ



Example Network Properties

State of the art tools verify reachability properties:
Waypointing: cvery packet traverses a firewall
Isolation: packets from VLLAN 1 cannot enter VVLANZ

Connectivity: all hosts in the network can communicate



Example Network Properties

State of the art tools verify reachability properties:
Waypointing: cvery packet traverses a firewall
Isolation: packets from VLLAN 1 cannot enter VVLANZ
Connectivity: all hosts in the network can communicate

Loop Freedom: there exist no forwarding 100ps



Example Network Properties

State of the art tools verify reachability properties:
Waypointing: cvery packet traverses a firewall
Isolation: packets from VLLAN 1 cannot enter VVLANZ
Connectivity: all hosts in the network can communicate
Loop Freedom: there exist no forwarding 100ps

Access Control: intemet packets cannot enter the VLAN



Example Network Properties

State of the art tools verify reachability properties:
Waypointing: cvery packet traverses a firewall
Isolation: packets from VLLAN 1 cannot enter VVLANZ
Connectivity: all hosts in the network can communicate
Loop Freedom: there exist no forwarding 100ps

Access Control: intemet packets cannot enter the VLAN

Key Assumption: network behavior is deterministic



Example Network Properties

State of the art tools verify reachability properties:

Waypointing: every packet traverses a firewall

Isol

Con ate

Loo

Access Control: intemet packets cannot enter the VLAN

Key Assumption: network behavior is deterministic



Probabilistic Network Behavior

Most of the time, networks behave deterministically.



Probabilistic Network Behavior

Most of the time, networks behave deterministically.

But what If...



Probabilistic Network Behavior

Most of the time, networks behave deterministically.
But what If...

4 ... a link or switch fails?



Probabilistic Network Behavior

Most of the time, networks behave deterministically.
But what If...
4+ ... a link or switch fails?

4+ ... the network employs resilient routing?



Probabilistic Network Behavior

Most of the time, networks behave deterministically.
But what If...
4+ ... a link or switch fails?

4+ ... the network employs resilient routing?

4+ "what's the probability of packet delivery?"



Probabilistic Network Behavior

Most of the time, networks behave deterministically.
But what If...
4+ ... a link or switch fails?

4+ ... the network employs resilient routing?
4+ "what's the probability of packet delivery?"
4+ 'what's the expected path length?"



Probabilistic Network Behavior

Most of the time, networks behave deterministically.
But what If...
4+ ... a link or switch fails?

4+ ... the network employs resilient routing?
4+ "what's the probability of packet delivery?"
4+ 'what's the expected path length?"

+... the network employs traffic engineering?



Probabilistic Network Behavior

Most of the time, networks behave deterministically.
But what If...
4+ ... a link or switch fails?

4+ ... the network employs resilient routing?
4+ "what's the probability of packet delivery?"
4+ 'what's the expected path length?"

+... the network employs traffic engineering?

4+ 'what's the expected congestion of this link?"



Probabilistic
Network Verification




Probabilistic NetKAT



Probabilistic NetKAT

DSL for programming, modeling &

reasoning apout probabilistic networks

Probabilistic NetKAT

. Dexter Kozen', Konstantinos Mamouras?, Mark Reitblatt!,
and Alexandra Silva®

Nate Foster!t

Cornell University, New York, USA
jnfoster@cs.cornell.edu
? University of Pennsylvania, Philadelphia, USA
University College London, London, UK

Abstract, This paper presents a new language for network program-
ming based on a probabilistic semantics. We extend the Net KA'Tlangnage
with new primitives for expressing probabilistic behaviors and enrich the
sernantics lrom one based on deterministic functions to one based on mea-
surable functions on sets of packet histories. We establish fundamental
properties of the semantics, prove that it is a conservative extension of
the deterministic semanties, show that it satisfies a number of natural
equations, and develop a notion of approximation. We present case stud-
ies that show how the language can be used to model a diverse collection
of scenarios drawn from real-world networks.

1 Introduction

Formal specification and verification of networks has become a reality in
recent years with the emergence of network-specific programming langnages and
praperty-checking tools. Programming langnages like Frenetic [117, Pyretic [35].
Maple 51, FlowLog [37), and others are enabling programmers to specify the
intended hehavior of a network in terms of high-level constrnets such as Boolean
predicates and functions on packets. Verification tools like Header Space Analy-
sis [21], VeriFlow 22, and NetKAT [12] are making it possible to check properties
snch as connectivity, loop freedom, and traffic isolation antomatically.

TMowever, despite many notable advances, these frameworks all have a funda-
mental limitation: they model network behavior in terms of deterministic packet-
processing functions. This approach works well enongh in settings where the
network functionality is simple, or where the properties of interest only concern
the forwarding paths used to carry traffic. But it does not provide satisfactory
acconnts of more complicated situations that often arise in practice:

Congestion: the network operator wishes to calenlate the expected degree
of congestion on cach link given a model of the demands for traffi
Failure: the network operator wishes to calenlate the probability th
will be delivered to their destination, given that devices and links
certain probability.

- '10]

Cantor Meets Scott: Semantic
Foundations for Probabilistic Networks

Steffen Smolka Praveen Kumar Nate Foster

Cormell University, USA Comell University, USA Comell University, USA

Dexter Kozen

Comell University, USA

Abstract

ProbNetKAT is a probabilistic extension of NetKAT with a de-
nottional semantics based on Markov kemels. The language is
expressive enough to generate continuous distributions. which raises
the question of how to compute effectively in the language. This
paper gives an new characterization of ProbNetKAT's semantics
using domuin theery, which provides the foundstion needed to build
a peactical implementation. We show how 10 use the semantics to
approximate the behavior of arbitrary ProbNetKAT programs using
distributions with finite sapport. We develop a prototype implemen-
tation and show how 10 use it 10 solve a vaniety of problems including
characterizing the expected congestion induced by dfferent rout
ing schemes and reasoning probabilistically about reachability in a
network.

Alexandra Silva
University College London, UK

Previcus work 0a ProbNetK AT (Foster et al. 2016) proposed
an extension 1 the NetKAT language (Asderson et al. 2014; Fos
ter et al. 2015) with a random choice operator that can be used
to express a variety of probabilistic behaviors. ProbNetKAT has a
compositional semantics based on Markov kernels that conserva-
tively exiends the deterministic NetKAT semantics and has been
used 10 reason about vanous aspects of network performance inchud-
ing congestion. fault tolerance. and latency. However. akhough the

are some major impediments to building a practical implementation
(i) the semantics of iteration is formulated as an infinite process
rather than a fixpoint in a suitable onder. and (ii) some programs
generate continuous distributions. These factors make it difficult

X when & has coaverged (o its final value,
and there are also challges related t repecsenting and analyzing
with infinite support

Categories and Subject iptors D31 [F Lan
guages): Formal Definitions and Theory—Semantics

Keywonds  Software-defined networking. Probabdistic semantics.
Kicene algebea with tests, Domain theory, NetK AT

1. Introduction

The recent emergence of software defined networking (SDN) has
led to the development of a number of domain-specific program-
ming languages (Foster ¢t al. 2011; Moasanto et al. [2013; Voellmy
etal. 2013 Nelsoa et al. 2014) md reasoning tools (Kazemian ct al

2012; Khurshad et al. 2013; Anderson et al. 2014; Foster et al. 2015)
for networks. But there is still a large gap between the models pro-
vided by these languages and the realities of modemn networks. In
particular, most existng SDN languages have semantics based on
deterministic packet-processing functions. which makes it impossi

ble to encode probahilistic behaviors. This is unformunate because in
the real world. network operators oftea use randomized protocols
and probabilistic reasoniag w achieve good performance.

This paper introduces a new semantics for ProbNetKAT, fol-
lowing the spproach pooncered by Sahed-Djaheons, Jones, and
Plotkin (Saheb-Djshromi 1980, 1978; Jones 1989; Plotkin 1982;
Jones and Plotkin 1989). Whereas the oniginal semantics of Prob.
NetKAT was somewhat imperative m nature, being based on stochas-
tic processes, the semantics introduced in this paper & parely func-
tional. Neverthekss, the two semantics are closely related—we give
a precise. techmcal characterization of the relationship between
them. The new semantics provides a suitable foundation for busld-
ing a practical mmplementation. it provides new insights into the
nature of probatlistic behavioe in setworks, and it opens up several
ineresting theoretical questions for futare work

Our new semantics follows the order-theoretic tradition estab-
lished in previous work on Scott-style domain theory (Scott1972;
Abramsky and Jung 1994). In panicular. Scott-continuous maps
on algebraic and contisuous DCPOs both play a key mle in our
development. However. there is an interesting twist: NetK AT and
ProbNetKAT are not state-based as with most other probabilistic
systems, but are rather troughpur-based. A ProbNetKAT program
can be thought of as  fikier Siat takes an input set of packet histories
and generates an output randomly distributed oa the measurable
space 2" of sets of packet histories. The closest thing 1o a “state™
is 3 set of packet histories, and the structure of these sets (¢ 2., the
leagths of the histories they contain and the standand ssbset relation)
are important considerations. Hence, the fundamental domains are
not flat domains as m traditional domain theory, but are instead the
DCPO of sets of packet histories ordered by the ssbset relation. An-
other point of departure from prior work is that the structures used

DL '17]

Probabilistic Program Equivalence for NetKAT

STEFFEN SMOLKA, Comell University, USA
PRAVEEN KUMAR, Comell University, USA

NATE FOSTER, Comell University, USA

JUSTIN HSU, Cornell University, USA

DAVID KAHN, Comell University, USA

DEXTER KOZEN, Cornell University, USA
ALEXANDRA SILVA, University College London, UK

We tackle the problem of deciding whether two probabil are equivalent in Probabilistic NetKAT,
a formal language for specifying and reasoning about the behavior of packet-switched networks. We show
that the problem is decidable for the history-free fragment of the language by developing an effective decision
procedure based on stochastic matrices. The main challenge lies in reasoning about iteration, which we address
bv designing an encoding of the program semantics as a finite-state absorbing Markov chain, whose limiting

bution can be computed exactly. In an ded case study on a real-world data center network, we
automatically verify various quantitative properties of interest, including resilience in the presence of failures,
by analyzing the Markov chain semantics.

1 INTRODUCTION

Program equivalence is one of the most fund: | problems in Comp Science: given a pair
of programs, do they describe the same computation? Thr problem is undecidable in general, but it
can often be solved for domain-specific languages based on restricted computational models. For
example, a classical approach for deciding whether a pair of regular expressions denote the same
language is to first convert the exp tod inistic finite which can then be
checked for equivalence in almost linear time [32). In addition to the theoretical motivation, there
are also many practical benefits to studying program equivalence. Being able to decide equivalence
enables more sophisticated applications, for instance in verified compilation and program synthesis.
Less obviously—but arguably more importantly—deciding equivalence typically involves finding
some sort of finite, explicit representation of the program semantics. This compact encoding can
open the door to reasoning techniques and decision procedures for properties that extend far
beyond straightforward program equivalence.

With this motivation in mind, this paper tackles the problem of deciding equivalence in Prob-
abilistic NetKAT (ProbNetKAT), a language for modeling and reasoning about the behavior of
packet-switched networks. As its name suggests, ProbNetKAT is based on NetKAT [3, 9, 30], which
is in turn based on Kleene algebra with tests (KAT), an algebraic system combining Boolean predi-
cates and regular expressions. ProbNetKAT extends NetKAT with a random choice operator and
a semantics based on Markov kernels [31). The framework can be used to encode and reason
about randomized protocols (e.g., a routing scheme that uses random forwarding paths to balance
load [33]); describe uncertainty about traffic demands (e.g., the diurnal/nocturnal fluctuation in
een in networks for large content providers [26]); and model failures
(e.g., switches or links that are known to fail with some probability [10]).

However, the semantics of ProbNetKAT is surprisingly subtle. Using the iteration operator
(ie., lhe l\ltene star from regular ﬂpnssmm) it is possible to write programs that generate

over an space of packet history sets [8, Theorem 3). This makes
reasoning about convergence non-trivial, and requires representing infinitary objects compactly

access patterns commonl

“This is & preliminary draft from March 21, 2018,




What ProbNetKAT can do



What ProbNetKAT can do

Verify reachability properties



What ProbNetKAT can do

Verify reachability properties
4+ but for probabilistic networks



What ProbNetKAT can do

Verify reachability properties
4+ but for probabilistic networks

Verify fault tolerance



What ProbNetKAT can do

Verify reachability properties
4+ but for probabilistic networks

Verify fault tolerance
4+ k-resilience



What ProbNetKAT can do

Verify reachability properties
4+ but for probabilistic networks

Verify fault tolerance
4+ k-resilience
4 'is scheme A is more resilient than scheme B?"



What ProbNetKAT can do

Verify reachability properties
4+ but for probabilistic networks

Verify fault tolerance
4+ k-resilience
4+ 'is scheme A is more resilient than scheme B?"
4+ probability of packet delivery



What ProbNetKAT can do

Verify reachability properties
4+ but for probabilistic networks

Verify fault tolerance
4+ k-resilience
4+ 'is scheme A is more resilient than scheme B?"
4+ probability of packet delivery

Compute quantitative network metrics



What ProbNetKAT can do

Verify reachability properties
4+ but for probabilistic networks

Verify fault tolerance
4+ k-resilience
4+ 'is scheme A is more resilient than scheme B?"
4+ probability of packet delivery

Compute quantitative network metrics
+ "expected number of hops?"



What ProbNetKAT can do

Verify reachability properties
4+ but for probabilistic networks

Verify fault tolerance
4+ k-resilience
4+ 'is scheme A is more resilient than scheme B?"
4+ probability of packet delivery

Compute quantitative network metrics

+ "expected number of hops?"
4+ "expected link congestion?"



What ProbNetKAT can do

Verify reachability properties
4+ but for probabilistic networks

Verify fault tolerance
4+ k-resilience
4+ 'is scheme A is more resilient than scheme B?"
4+ probability of packet delivery

Compute quantitative network metrics
4+ "expected number of hops?"
4+ "expected link congestion?"
4+ computes analytical solution, not approximation



Case Study

F10: A Fault-Tolerant Engineered Network

Vincent Liu, Daniel Halperin, Arvind Krishnamurthy, Thomas Anderson
University of Washington




Case Study

F10: A Fault-Tolerant Engineered Network

Vincent Liu, Daniel Halperin, Arvind Krishnamurthy, Thomas Anderson
University of Washington

Motivation
4 short-term failures in data centers are common



Case Study

F10: A Fault-Tolerant Engineered Network

Vincent Liu, Daniel Halperin, Arvind Krishnamurthy, Thomas Anderson
University of Washington

Motivation

4 short-term failures in data centers are common
4+ application performance suffers



Case Study

F10: A Fault-Tolerant Engineered Network

Vincent Liu, Daniel Halperin, Arvind Krishnamurthy, Thomas Anderson
University of Washington

Motivation
4+ short-term failures in data centers are common
4+ application performance suffers
4+ despite 1:1 redundancy!




Case Study

F10: A Fault-Tolerant Engineered Network

Vincent Liu, Daniel Halperin, Arvind Krishnamurthy, Thomas Anderson
University of Washington

Motivation
4+ short-term failures in data centers are common
4+ application performance suffers
4+ despite 1:1 redundancy!




Case Study

F10: A Fault-Tolerant Engineered Network

Vincent Liu, Daniel Halperin, Arvind Krishnamurthy, Thomas Anderson
University of Washington

Motivation
4+ short-term failures in data centers are common
4+ application performance suffers
4+ despite 1:1 redundancy!

Solution



Case Study

F10: A Fault-Tolerant Engineered Network

Vincent Liu, Daniel Halperin, Arvind Krishnamurthy, Thomas Anderson
University of Washington

Motivation
4+ short-term failures in data centers are common
4+ application performance suffers
4+ despite 1:1 redundancy!

Solution
4+ detect failures of neighboring links & switches...



Case Study

F10: A Fault-Tolerant Engineered Network

Vincent Liu, Daniel Halperin, Arvind Krishnamurthy, Thomas Anderson
University of Washington

Motivation
4+ short-term failures in data centers are common
4+ application performance suffers
4+ despite 1:1 redundancy!

Solution

4+ detect failures of neighboring links & switches...
4+ ...and route around them



Case Study: Topology

An ABFatTree is much like a regular FatTree

Core
b

Aggregation > > ’ ’ > > ’ y

Eidge RV AEYD A Y AEY AeY Y Y
sl s2 s3 s4 sH sO s7 S&



Case Study: Topology

An ABFatTree is much like a regular FatTree

Core

Aggregation

R R @\

Edge




Case Study: Topology

An ABFatTree is much like a regular FatTree

Core

Aggregatlon W W
Edge REd AR R R REd)
s2 s3 s4 SH sO




Case Study: Topology

An ABFatTree is much like a regular FatTree

Core

Eidge R AED Rl REY RED
S2 s3 sd SH sO




Case Study: Topology

An ABFatTree is much like a regular FatTree

Core

Aggregation f m’ W
Edge Rixd’ Rixdl Rixd’ Risd’ RixdV
s2 s3 s4 SH sO

But it provides shorter detours around failures




Case Study: Topology

An ABFatTree is much like a regular FatTree

Core

s4

S3 SO

But it provides shorter detours around failures



Case Study: Topology

An ABFatTree is much like a regular FatTree

Core

//

Aggregation ﬁ > m‘
Edge Rixd’ Rixdl Rixd Rixdr RisdV
s2 s3 s4 SO sO

But it provides shorter detours around failures




Case Study: Routing Schemes

We implemented F10 as a series of 3 refinements



Case Study: Routing Schemes

We implemented F10 as a series of 3 refinements

F10o

F103

ey @
-; 0
N -
— D
Q. =

T
= 5
O 0

F1035




Case Study: Routing Schemes

We implemented F10 as a series of 3 refinements

F10o

shortest path routing

F103

2 @
Q —
= &
O o

F1035




Case Study: Routing Schemes

We implemented F10 as a series of 3 refinements

F10o

shortest path routing

F103
=100 + 3-nop rerouting

ey @
-; 0
N -
— D
Q. =

T
= 5
O 0

F1035




Case Study: Routing Schemes

We implemented F10 as a series of 3 refinements

F10o

shortest path routing

F103
=100 + 3-nop rerouting

ey @
-; 0
N -
— D
Q. =

T
= 5
O 0

F1035
~103 + 5-nop rerouting




Case Study: Routing Schemes

We implemented F10 as a series of 3 refinements

F10o

shortest path routing

F103
=100 + 3-nop rerouting

O
O
-

2

»
o

as

>
=

>

9

Q
=

O
O

F1035

~103 + 5-nop rerouting



Case Study: k-resilience
We verified k-resilience using ProbNetKAT



Case Study: k-resilience
We verified k-resilience using ProbNetKAT

Sophistication of Routing Scheme

k  F10, F10; F105 5
0 / / X
1 X / X
y X / X
3 X X X
4 X X X
00 X X X

K = number of failures v = 100% packet delivery



Case Study: k-resilience
We verified k-resilience using ProbNetKAT

Sophistication of Routing Scheme

F10, F10,

8 B W N = O
> X X X X \
>x X X N\ N\ N

K = number of failures v = 100% packet delivery



Case Study: k-resilience
We verified k-resilience using ProbNetKAT

Sophistication of Routing Scheme

F10, F10,

v v
1 X v

K = number of failures v = 100% packet delivery



Case Study: k-resilience
After fixing the bug...

Sophistication of Routing Scheme

K = number of failures v = 100% packet delivery



Case Study: probability of delivery

We evaluated packet loss when link failures increase

---_"~~~ .\.X
0.95 'S
N\
= oS
- \
2 0.90" N
© \
. \
o —&— AB FatTree, F10 no rerouting \
0.851 —>¢=AB FatTree, F10 3-hop rerouting \
—o— AB FatTree, F10 3+5-hop rerouting \
\
0.801 --4-+ FatTree, F10 3+5-hop rerouting \X
1/128  1/64 1/32 1/16 1/8 1/4

Link failure probability

Dramatic improvement when using rerouting



Case Study: probability of delivery

We evaluated packet loss when link failures increase

1.00 ] frmrmmmmrit¥ * A
—_"~~~~ \'X
5‘\
0.97
>
(O]
= 0.9
()]
) s
o —&— AB FatTree, F10 no rerouting \
0.857 —>¢=AB FatTree, F10 3-hop rerouting \
—o— AB FatTree, F10 3+5-hop rerouting \\
\
0.801 --4-+ FatTree, F10 3+5-hop rerouting \X
1/128  1/64  1/32  1/16 1/8 1/4

Link failure probability

Dramatic improvement when using rerouting



Case Study: expected hop count

The price of resilience: increased paths lengths

e
00

*

| —&-= AB FatTlree, F10 no rerouting

| —<— AB FatTree, F10 3-hop rerouting
—o—  AB FatTree, F10 34-5-hop rerouting
-4+ FatTlree, F10 3+5-hop rerouting

e
o

=
N

=
o

E[hop count | delivered|
I
DO

&2
00

&2
o

1/128  1/64 1/32 1/16 1/8 1/4
Link failure probability

ABFatTree outperforms regular FatTree



Case Study: expected hop count

The price of resilience: increased paths lengths

4.81 —&— AB FatTree, F10 no rerouting ."..
=46 —><=AB FatTree, F10 3-hop rerouting
c | —— AB FatTree, F10 3+5-hop rerouting
'TEJ 4.41 --4-+ Fatlree, F10 3+5-hop rerouting
K>
1=
=
S
(@R
E
o
3.8
3.6 1— , , , , ,
1/128 1/64 1/32 1/16 1/8 1/4

Link failure probability

ABFatTree outperforms regular FatTree



Wrapping Up



Conclusion

ProbNetKAT is the first probabilistic network
verification tool




Conclusion

ProbNetKAT is the first probabilistic network
verification tool

Can verify reachability properties
even If network behavior is not deterministic



Conclusion

ProbNetKAT is the first probabilistic network
verification tool

Can verify reachability properties
even If network behavior is not deterministic

Can reason about resilience
e.g., k-resilience, probability of delivery



Conclusion

ProbNetKAT is the first probabilistic network
verification tool

Can verify reachability properties
even If network behavior is not deterministic

Can reason about resilience
e.g., k-resilience, probability of delivery

Can reason about quantitative properties
e.g., expected path length under failure model



Future Work



Future Work

Scalable implementation
Current prototype does not scale beyond 100
switches




Future Work

Scalable implementation
Current prototype does not scale beyond 100
switches

Probabilistic Inference
Given observation of packet loss, what link
failure has most likely occurred?




Future Work

Scalable implementation
Current prototype does not scale beyond 100
switches

Probabilistic Inference
Given observation of packet loss, what link
failure has most likely occurred?

More expressive language
ProbNetKAT has no notion of queuing or time



Dexter
Kozen

Nate
Foster

(s

s

Praveen Aleandra Steffen
Kumar Silva Smolka

PROBABILISTIC

NET

KAT




