
Probabilistic
Network Verification

Steffen Smolka
Cornell University

Overview:

Network Verification
(In particular, data plane verification)

Network verification has taken off!

Several start-ups

Deployed at big

cloud providers

Lots of research

Example: Network Verification
cluded constructs for filtering, forwarding, duplicating, and modi-
fying packets. Subsequent versions of the language added (and later
removed) the ability to embed arbitrary packet-processing func-
tions in policies [23], as well as constructs for composing policies
in parallel and sequence [24]. As Frenetic evolved, its designers
added, removed, and modified the meaning of primitives as dictated
by the needs of applications. Without principles or metatheory to
guide its development, its evolution has lacked clear direction and
foresight. The ad hoc semantics has not made clear which primi-
tives are essential and which ones can be derived, and when new
constructs have been added to the language, it has not been clear
how they should interact with existing constructs and what behav-
ioral laws they should obey.

An even more pressing issue is that these static policy lan-
guages only specify the forwarding behavior of the switches in the
network. However, when a network program is actually executed,
end-to-end functionality is determined both by the behavior of the
switches and by the structure of the network topology. To answer
almost any interesting question about the network such as “Can X
connect to Y?”, “Is traffic from A to B routed through Z?”, or “Is
there a loop involving S?”, the programmer must step outside the
confines of the linguistic model and the abstractions it provides.

To summarize, we believe that a foundational model for network
programming languages is essential. Such a model should (i) iden-
tify the essential constructs for programming networks, (ii) provide
guidelines for incorporating new features, and (iii) unify reasoning
about switches, topology and end-to-end behavior.

Semantic foundations. This paper presents the first network pro-
gramming language that meets these criteria. To begin, we focus
on the global behavior of the network, unlike previous network
programming languages, which have focused on the local behav-
ior of individual switches. Abstractly, a network can be seen as an
automaton that moves packets from node to node along the links
in its topology. Hence, from a linguistic perspective, it is natural
to use regular expressions, the language of finite automata. Regu-
lar expressions are a standard way to specify the packet-processing
behavior of a network: a path is encoded as a concatenation of pro-
cessing steps (p·q ·· · ·), a set of paths is encoded as a union of paths
(p+ q+ · · ·), and iterated processing is encoded using Kleene star.
Moreover, by modeling the network in this way, we get a ready-
made theory for reasoning about formal properties: Kleene algebra
(KA), a decades-old sound and complete equational theory of regu-
lar expressions.

With Kleene algebra as the choice for representing global
network structure, we can turn our attention to specifying local
switch-processing functionality. Fundamentally, a switch imple-
ments predicates to match packets and actions that transform and
forward matching packets. Existing languages build various ab-
stractions atop the predicates and actions supplied by the hardware,
but predicates and actions are essential. As a consequence, a foun-
dational model for SDN must incorporate both Kleene algebra for
reasoning about network structure and Boolean algebra for reason-
ing about the predicates that define switch behavior. Fortunately,
these classic mathematical structures have already been unified in
previous work on Kleene algebra with tests (KAT) [14].

By now KAT has a well-developed metatheory, including an
extensive model theory and results on expressiveness, deductive
completeness, and complexity. The axioms of KAT are sound and
complete over a variety of popular semantic models, including lan-
guage, relational, and trace models, and KAT has been applied suc-
cessfully in a number of application areas, including compiler, de-
vice driver, and communication protocol verification [3, 15, 16, 22].
Moreover, equivalence in KAT has a PSPACE decision procedure.
This paper applies this theory to a new domain: networks.

Host 1
Switch A Switch B Host 2

1 2 1 2

Figure 1. Example network.

NetKAT. NetKAT is a new framework for specifying, program-
ming, and reasoning about networks based on Kleene algebra with
tests. As a programming language, NetKAT has a simple denota-
tional semantics inspired by NetCore [23], but modified and ex-
tended in key ways to make it sound for KAT (which NetCore is
not). In this respect, the semantic foundation provided by KAT has
delivered true guidance: the axioms of KAT dictate the interactions
between primitive program actions, predicates, and other operators.
Moreover, any future proposed primitive that violates a KAT axiom
can be summarily rejected for breaking the equations that allow
us to reason effectively about the network. NetKAT thus provides
a foundational structure and consistent reasoning principles that
other network programming languages lack.

For specification and reasoning, NetKAT also provides a finite
set of equations that capture equivalences between NetKAT pro-
grams. The equational theory includes the axioms of KAT, as well
as domain-specific axioms that capture transformations on packets.
This set of axioms enables reasoning about local switch processing
functionality (needed in compilation and optimization) as well as
global network behavior (needed to check reachability and traffic
isolation properties). We prove that the equational theory is sound
and complete with respect to the denotational semantics. While the
soundness proof is straightforward, our proof of completeness is
novel: we construct an alternate language model for NetKAT and
leverage the completeness of KA.

To evaluate the practical utility of our theory and the expres-
sive power of NetKAT, we demonstrate how it can be used to rea-
son about a diverse collection of applications. First, we show that
NetKAT can answer a variety of interesting reachability queries
useful to network operators. Next, we state and prove a non-
interference property for networks that provides a strong form of
isolation between NetKAT programs. Finally, we prove that NetKAT
can be correctly compiled to a low-level form analogous to switch
flow tables.

In summary, the contributions of this paper are as follows:

• We develop a new semantic foundation for network program-
ming languages based on Kleene algebra with tests (KAT).

• We formalize the NetKAT language in terms of a denotational
semantics and an axiomatic semantics based on KAT; we prove
the equational axioms sound and complete with respect to the
denotational semantics.

• We apply the equational theory in several diverse domains in-
cluding reasoning about reachability, traffic isolation, and com-
piler correctness.

The next section presents a simple example to motivate NetKAT
and introduces the key elements of its design. The subsequent
sections define the language formally, develop its main theoretical
properties, and present applications.

2. Overview

This section introduces the syntax and semantics of NetKAT using
a simple example. Consider the network shown in Figure 1. It
consists of switches A and B, each with ports labeled 1 and 2,
and two hosts. The switches and hosts are connected together in

Example: Network Verification
cluded constructs for filtering, forwarding, duplicating, and modi-
fying packets. Subsequent versions of the language added (and later
removed) the ability to embed arbitrary packet-processing func-
tions in policies [23], as well as constructs for composing policies
in parallel and sequence [24]. As Frenetic evolved, its designers
added, removed, and modified the meaning of primitives as dictated
by the needs of applications. Without principles or metatheory to
guide its development, its evolution has lacked clear direction and
foresight. The ad hoc semantics has not made clear which primi-
tives are essential and which ones can be derived, and when new
constructs have been added to the language, it has not been clear
how they should interact with existing constructs and what behav-
ioral laws they should obey.

An even more pressing issue is that these static policy lan-
guages only specify the forwarding behavior of the switches in the
network. However, when a network program is actually executed,
end-to-end functionality is determined both by the behavior of the
switches and by the structure of the network topology. To answer
almost any interesting question about the network such as “Can X
connect to Y?”, “Is traffic from A to B routed through Z?”, or “Is
there a loop involving S?”, the programmer must step outside the
confines of the linguistic model and the abstractions it provides.

To summarize, we believe that a foundational model for network
programming languages is essential. Such a model should (i) iden-
tify the essential constructs for programming networks, (ii) provide
guidelines for incorporating new features, and (iii) unify reasoning
about switches, topology and end-to-end behavior.

Semantic foundations. This paper presents the first network pro-
gramming language that meets these criteria. To begin, we focus
on the global behavior of the network, unlike previous network
programming languages, which have focused on the local behav-
ior of individual switches. Abstractly, a network can be seen as an
automaton that moves packets from node to node along the links
in its topology. Hence, from a linguistic perspective, it is natural
to use regular expressions, the language of finite automata. Regu-
lar expressions are a standard way to specify the packet-processing
behavior of a network: a path is encoded as a concatenation of pro-
cessing steps (p·q ·· · ·), a set of paths is encoded as a union of paths
(p+ q+ · · ·), and iterated processing is encoded using Kleene star.
Moreover, by modeling the network in this way, we get a ready-
made theory for reasoning about formal properties: Kleene algebra
(KA), a decades-old sound and complete equational theory of regu-
lar expressions.

With Kleene algebra as the choice for representing global
network structure, we can turn our attention to specifying local
switch-processing functionality. Fundamentally, a switch imple-
ments predicates to match packets and actions that transform and
forward matching packets. Existing languages build various ab-
stractions atop the predicates and actions supplied by the hardware,
but predicates and actions are essential. As a consequence, a foun-
dational model for SDN must incorporate both Kleene algebra for
reasoning about network structure and Boolean algebra for reason-
ing about the predicates that define switch behavior. Fortunately,
these classic mathematical structures have already been unified in
previous work on Kleene algebra with tests (KAT) [14].

By now KAT has a well-developed metatheory, including an
extensive model theory and results on expressiveness, deductive
completeness, and complexity. The axioms of KAT are sound and
complete over a variety of popular semantic models, including lan-
guage, relational, and trace models, and KAT has been applied suc-
cessfully in a number of application areas, including compiler, de-
vice driver, and communication protocol verification [3, 15, 16, 22].
Moreover, equivalence in KAT has a PSPACE decision procedure.
This paper applies this theory to a new domain: networks.

Host 1
Switch A Switch B Host 2

1 2 1 2

Figure 1. Example network.

NetKAT. NetKAT is a new framework for specifying, program-
ming, and reasoning about networks based on Kleene algebra with
tests. As a programming language, NetKAT has a simple denota-
tional semantics inspired by NetCore [23], but modified and ex-
tended in key ways to make it sound for KAT (which NetCore is
not). In this respect, the semantic foundation provided by KAT has
delivered true guidance: the axioms of KAT dictate the interactions
between primitive program actions, predicates, and other operators.
Moreover, any future proposed primitive that violates a KAT axiom
can be summarily rejected for breaking the equations that allow
us to reason effectively about the network. NetKAT thus provides
a foundational structure and consistent reasoning principles that
other network programming languages lack.

For specification and reasoning, NetKAT also provides a finite
set of equations that capture equivalences between NetKAT pro-
grams. The equational theory includes the axioms of KAT, as well
as domain-specific axioms that capture transformations on packets.
This set of axioms enables reasoning about local switch processing
functionality (needed in compilation and optimization) as well as
global network behavior (needed to check reachability and traffic
isolation properties). We prove that the equational theory is sound
and complete with respect to the denotational semantics. While the
soundness proof is straightforward, our proof of completeness is
novel: we construct an alternate language model for NetKAT and
leverage the completeness of KA.

To evaluate the practical utility of our theory and the expres-
sive power of NetKAT, we demonstrate how it can be used to rea-
son about a diverse collection of applications. First, we show that
NetKAT can answer a variety of interesting reachability queries
useful to network operators. Next, we state and prove a non-
interference property for networks that provides a strong form of
isolation between NetKAT programs. Finally, we prove that NetKAT
can be correctly compiled to a low-level form analogous to switch
flow tables.

In summary, the contributions of this paper are as follows:

• We develop a new semantic foundation for network program-
ming languages based on Kleene algebra with tests (KAT).

• We formalize the NetKAT language in terms of a denotational
semantics and an axiomatic semantics based on KAT; we prove
the equational axioms sound and complete with respect to the
denotational semantics.

• We apply the equational theory in several diverse domains in-
cluding reasoning about reachability, traffic isolation, and com-
piler correctness.

The next section presents a simple example to motivate NetKAT
and introduces the key elements of its design. The subsequent
sections define the language formally, develop its main theoretical
properties, and present applications.

2. Overview

This section introduces the syntax and semantics of NetKAT using
a simple example. Consider the network shown in Figure 1. It
consists of switches A and B, each with ports labeled 1 and 2,
and two hosts. The switches and hosts are connected together in

"Are packets routed between hosts?"
"Are ssh packets dropped?"

Example: Network Verification
cluded constructs for filtering, forwarding, duplicating, and modi-
fying packets. Subsequent versions of the language added (and later
removed) the ability to embed arbitrary packet-processing func-
tions in policies [23], as well as constructs for composing policies
in parallel and sequence [24]. As Frenetic evolved, its designers
added, removed, and modified the meaning of primitives as dictated
by the needs of applications. Without principles or metatheory to
guide its development, its evolution has lacked clear direction and
foresight. The ad hoc semantics has not made clear which primi-
tives are essential and which ones can be derived, and when new
constructs have been added to the language, it has not been clear
how they should interact with existing constructs and what behav-
ioral laws they should obey.

An even more pressing issue is that these static policy lan-
guages only specify the forwarding behavior of the switches in the
network. However, when a network program is actually executed,
end-to-end functionality is determined both by the behavior of the
switches and by the structure of the network topology. To answer
almost any interesting question about the network such as “Can X
connect to Y?”, “Is traffic from A to B routed through Z?”, or “Is
there a loop involving S?”, the programmer must step outside the
confines of the linguistic model and the abstractions it provides.

To summarize, we believe that a foundational model for network
programming languages is essential. Such a model should (i) iden-
tify the essential constructs for programming networks, (ii) provide
guidelines for incorporating new features, and (iii) unify reasoning
about switches, topology and end-to-end behavior.

Semantic foundations. This paper presents the first network pro-
gramming language that meets these criteria. To begin, we focus
on the global behavior of the network, unlike previous network
programming languages, which have focused on the local behav-
ior of individual switches. Abstractly, a network can be seen as an
automaton that moves packets from node to node along the links
in its topology. Hence, from a linguistic perspective, it is natural
to use regular expressions, the language of finite automata. Regu-
lar expressions are a standard way to specify the packet-processing
behavior of a network: a path is encoded as a concatenation of pro-
cessing steps (p·q ·· · ·), a set of paths is encoded as a union of paths
(p+ q+ · · ·), and iterated processing is encoded using Kleene star.
Moreover, by modeling the network in this way, we get a ready-
made theory for reasoning about formal properties: Kleene algebra
(KA), a decades-old sound and complete equational theory of regu-
lar expressions.

With Kleene algebra as the choice for representing global
network structure, we can turn our attention to specifying local
switch-processing functionality. Fundamentally, a switch imple-
ments predicates to match packets and actions that transform and
forward matching packets. Existing languages build various ab-
stractions atop the predicates and actions supplied by the hardware,
but predicates and actions are essential. As a consequence, a foun-
dational model for SDN must incorporate both Kleene algebra for
reasoning about network structure and Boolean algebra for reason-
ing about the predicates that define switch behavior. Fortunately,
these classic mathematical structures have already been unified in
previous work on Kleene algebra with tests (KAT) [14].

By now KAT has a well-developed metatheory, including an
extensive model theory and results on expressiveness, deductive
completeness, and complexity. The axioms of KAT are sound and
complete over a variety of popular semantic models, including lan-
guage, relational, and trace models, and KAT has been applied suc-
cessfully in a number of application areas, including compiler, de-
vice driver, and communication protocol verification [3, 15, 16, 22].
Moreover, equivalence in KAT has a PSPACE decision procedure.
This paper applies this theory to a new domain: networks.

Host 1
Switch A Switch B Host 2

1 2 1 2

Figure 1. Example network.

NetKAT. NetKAT is a new framework for specifying, program-
ming, and reasoning about networks based on Kleene algebra with
tests. As a programming language, NetKAT has a simple denota-
tional semantics inspired by NetCore [23], but modified and ex-
tended in key ways to make it sound for KAT (which NetCore is
not). In this respect, the semantic foundation provided by KAT has
delivered true guidance: the axioms of KAT dictate the interactions
between primitive program actions, predicates, and other operators.
Moreover, any future proposed primitive that violates a KAT axiom
can be summarily rejected for breaking the equations that allow
us to reason effectively about the network. NetKAT thus provides
a foundational structure and consistent reasoning principles that
other network programming languages lack.

For specification and reasoning, NetKAT also provides a finite
set of equations that capture equivalences between NetKAT pro-
grams. The equational theory includes the axioms of KAT, as well
as domain-specific axioms that capture transformations on packets.
This set of axioms enables reasoning about local switch processing
functionality (needed in compilation and optimization) as well as
global network behavior (needed to check reachability and traffic
isolation properties). We prove that the equational theory is sound
and complete with respect to the denotational semantics. While the
soundness proof is straightforward, our proof of completeness is
novel: we construct an alternate language model for NetKAT and
leverage the completeness of KA.

To evaluate the practical utility of our theory and the expres-
sive power of NetKAT, we demonstrate how it can be used to rea-
son about a diverse collection of applications. First, we show that
NetKAT can answer a variety of interesting reachability queries
useful to network operators. Next, we state and prove a non-
interference property for networks that provides a strong form of
isolation between NetKAT programs. Finally, we prove that NetKAT
can be correctly compiled to a low-level form analogous to switch
flow tables.

In summary, the contributions of this paper are as follows:

• We develop a new semantic foundation for network program-
ming languages based on Kleene algebra with tests (KAT).

• We formalize the NetKAT language in terms of a denotational
semantics and an axiomatic semantics based on KAT; we prove
the equational axioms sound and complete with respect to the
denotational semantics.

• We apply the equational theory in several diverse domains in-
cluding reasoning about reachability, traffic isolation, and com-
piler correctness.

The next section presents a simple example to motivate NetKAT
and introduces the key elements of its design. The subsequent
sections define the language formally, develop its main theoretical
properties, and present applications.

2. Overview

This section introduces the syntax and semantics of NetKAT using
a simple example. Consider the network shown in Figure 1. It
consists of switches A and B, each with ports labeled 1 and 2,
and two hosts. The switches and hosts are connected together in

"Are packets routed between hosts?"
"Are ssh packets dropped?"

Inputs: Network config & topology + question

Outputs: "Yes" / "No" + counterexample

Verification Tool

Example: Network Verification
cluded constructs for filtering, forwarding, duplicating, and modi-
fying packets. Subsequent versions of the language added (and later
removed) the ability to embed arbitrary packet-processing func-
tions in policies [23], as well as constructs for composing policies
in parallel and sequence [24]. As Frenetic evolved, its designers
added, removed, and modified the meaning of primitives as dictated
by the needs of applications. Without principles or metatheory to
guide its development, its evolution has lacked clear direction and
foresight. The ad hoc semantics has not made clear which primi-
tives are essential and which ones can be derived, and when new
constructs have been added to the language, it has not been clear
how they should interact with existing constructs and what behav-
ioral laws they should obey.

An even more pressing issue is that these static policy lan-
guages only specify the forwarding behavior of the switches in the
network. However, when a network program is actually executed,
end-to-end functionality is determined both by the behavior of the
switches and by the structure of the network topology. To answer
almost any interesting question about the network such as “Can X
connect to Y?”, “Is traffic from A to B routed through Z?”, or “Is
there a loop involving S?”, the programmer must step outside the
confines of the linguistic model and the abstractions it provides.

To summarize, we believe that a foundational model for network
programming languages is essential. Such a model should (i) iden-
tify the essential constructs for programming networks, (ii) provide
guidelines for incorporating new features, and (iii) unify reasoning
about switches, topology and end-to-end behavior.

Semantic foundations. This paper presents the first network pro-
gramming language that meets these criteria. To begin, we focus
on the global behavior of the network, unlike previous network
programming languages, which have focused on the local behav-
ior of individual switches. Abstractly, a network can be seen as an
automaton that moves packets from node to node along the links
in its topology. Hence, from a linguistic perspective, it is natural
to use regular expressions, the language of finite automata. Regu-
lar expressions are a standard way to specify the packet-processing
behavior of a network: a path is encoded as a concatenation of pro-
cessing steps (p·q ·· · ·), a set of paths is encoded as a union of paths
(p+ q+ · · ·), and iterated processing is encoded using Kleene star.
Moreover, by modeling the network in this way, we get a ready-
made theory for reasoning about formal properties: Kleene algebra
(KA), a decades-old sound and complete equational theory of regu-
lar expressions.

With Kleene algebra as the choice for representing global
network structure, we can turn our attention to specifying local
switch-processing functionality. Fundamentally, a switch imple-
ments predicates to match packets and actions that transform and
forward matching packets. Existing languages build various ab-
stractions atop the predicates and actions supplied by the hardware,
but predicates and actions are essential. As a consequence, a foun-
dational model for SDN must incorporate both Kleene algebra for
reasoning about network structure and Boolean algebra for reason-
ing about the predicates that define switch behavior. Fortunately,
these classic mathematical structures have already been unified in
previous work on Kleene algebra with tests (KAT) [14].

By now KAT has a well-developed metatheory, including an
extensive model theory and results on expressiveness, deductive
completeness, and complexity. The axioms of KAT are sound and
complete over a variety of popular semantic models, including lan-
guage, relational, and trace models, and KAT has been applied suc-
cessfully in a number of application areas, including compiler, de-
vice driver, and communication protocol verification [3, 15, 16, 22].
Moreover, equivalence in KAT has a PSPACE decision procedure.
This paper applies this theory to a new domain: networks.

Host 1
Switch A Switch B Host 2

1 2 1 2

Figure 1. Example network.

NetKAT. NetKAT is a new framework for specifying, program-
ming, and reasoning about networks based on Kleene algebra with
tests. As a programming language, NetKAT has a simple denota-
tional semantics inspired by NetCore [23], but modified and ex-
tended in key ways to make it sound for KAT (which NetCore is
not). In this respect, the semantic foundation provided by KAT has
delivered true guidance: the axioms of KAT dictate the interactions
between primitive program actions, predicates, and other operators.
Moreover, any future proposed primitive that violates a KAT axiom
can be summarily rejected for breaking the equations that allow
us to reason effectively about the network. NetKAT thus provides
a foundational structure and consistent reasoning principles that
other network programming languages lack.

For specification and reasoning, NetKAT also provides a finite
set of equations that capture equivalences between NetKAT pro-
grams. The equational theory includes the axioms of KAT, as well
as domain-specific axioms that capture transformations on packets.
This set of axioms enables reasoning about local switch processing
functionality (needed in compilation and optimization) as well as
global network behavior (needed to check reachability and traffic
isolation properties). We prove that the equational theory is sound
and complete with respect to the denotational semantics. While the
soundness proof is straightforward, our proof of completeness is
novel: we construct an alternate language model for NetKAT and
leverage the completeness of KA.

To evaluate the practical utility of our theory and the expres-
sive power of NetKAT, we demonstrate how it can be used to rea-
son about a diverse collection of applications. First, we show that
NetKAT can answer a variety of interesting reachability queries
useful to network operators. Next, we state and prove a non-
interference property for networks that provides a strong form of
isolation between NetKAT programs. Finally, we prove that NetKAT
can be correctly compiled to a low-level form analogous to switch
flow tables.

In summary, the contributions of this paper are as follows:

• We develop a new semantic foundation for network program-
ming languages based on Kleene algebra with tests (KAT).

• We formalize the NetKAT language in terms of a denotational
semantics and an axiomatic semantics based on KAT; we prove
the equational axioms sound and complete with respect to the
denotational semantics.

• We apply the equational theory in several diverse domains in-
cluding reasoning about reachability, traffic isolation, and com-
piler correctness.

The next section presents a simple example to motivate NetKAT
and introduces the key elements of its design. The subsequent
sections define the language formally, develop its main theoretical
properties, and present applications.

2. Overview

This section introduces the syntax and semantics of NetKAT using
a simple example. Consider the network shown in Figure 1. It
consists of switches A and B, each with ports labeled 1 and 2,
and two hosts. The switches and hosts are connected together in

"Are packets routed between hosts?"
"Are ssh packets dropped?"

Inputs: Network config & topology + question

Outputs: "Yes" / "No" + counterexample

Verification Tool

`What's the big deal?

The Power of Verification

Guesswork that network will behave correctly

The Power of Verification

Guesswork that network will behave correctly

Mathematical proof of policy compliance

The Power of Verification

Guesswork that network will behave correctly

Mathematical proof of policy compliance

Consequences:

The Power of Verification

Guesswork that network will behave correctly

Mathematical proof of policy compliance

Consequences:
✦ Bugs can be found before they ever manifest

The Power of Verification

Guesswork that network will behave correctly

Mathematical proof of policy compliance

Consequences:
✦ Bugs can be found before they ever manifest
✦ Can change network config with confidence

The Power of Verification

Guesswork that network will behave correctly

Mathematical proof of policy compliance

Consequences:
✦ Bugs can be found before they ever manifest
✦ Can change network config with confidence
✦ More robust & more efficient network

The Power of Verification

Guesswork that network will behave correctly

Mathematical proof of policy compliance

Consequences:
✦ Bugs can be found before they ever manifest
✦ Can change network config with confidence
✦ More robust & more efficient network
✦ Your network operators can sleep better...

Example Network Properties

State of the art tools verify reachability properties:

Example Network Properties

State of the art tools verify reachability properties:

Waypointing: every packet traverses a firewall

Example Network Properties

State of the art tools verify reachability properties:

Waypointing: every packet traverses a firewall

Isolation: packets from VLAN 1 cannot enter VLAN2

Example Network Properties

State of the art tools verify reachability properties:

Waypointing: every packet traverses a firewall

Isolation: packets from VLAN 1 cannot enter VLAN2

Connectivity: all hosts in the network can communicate

Example Network Properties

State of the art tools verify reachability properties:

Waypointing: every packet traverses a firewall

Isolation: packets from VLAN 1 cannot enter VLAN2

Connectivity: all hosts in the network can communicate

Loop Freedom: there exist no forwarding loops

Example Network Properties

State of the art tools verify reachability properties:

Waypointing: every packet traverses a firewall

Isolation: packets from VLAN 1 cannot enter VLAN2

Connectivity: all hosts in the network can communicate

Loop Freedom: there exist no forwarding loops

Access Control: internet packets cannot enter the VLAN

Example Network Properties

State of the art tools verify reachability properties:

Waypointing: every packet traverses a firewall

Isolation: packets from VLAN 1 cannot enter VLAN2

Connectivity: all hosts in the network can communicate

Loop Freedom: there exist no forwarding loops

Access Control: internet packets cannot enter the VLAN

Key Assumption: network behavior is deterministic

Example Network Properties

State of the art tools verify reachability properties:

Waypointing: every packet traverses a firewall

Isolation: packets from VLAN 1 cannot enter VLAN2

Connectivity: all hosts in the network can communicate

Loop Freedom: there exist no forwarding loops

Access Control: internet packets cannot enter the VLAN

Key Assumption: network behavior is deterministic

`Is it?

Probabilistic Network Behavior

Most of the time, networks behave deterministically.

Probabilistic Network Behavior

Most of the time, networks behave deterministically.

But what if...

Probabilistic Network Behavior

Most of the time, networks behave deterministically.

But what if...

✦ ... a link or switch fails?

Probabilistic Network Behavior

Most of the time, networks behave deterministically.

But what if...

✦ ... a link or switch fails?

✦ ... the network employs resilient routing?

Probabilistic Network Behavior

Most of the time, networks behave deterministically.

But what if...

✦ ... a link or switch fails?

✦ ... the network employs resilient routing?
✦ "what's the probability of packet delivery?"

Probabilistic Network Behavior

Most of the time, networks behave deterministically.

But what if...

✦ ... a link or switch fails?

✦ ... the network employs resilient routing?
✦ "what's the probability of packet delivery?"
✦ "what's the expected path length?"

Probabilistic Network Behavior

Most of the time, networks behave deterministically.

But what if...

✦ ... a link or switch fails?

✦ ... the network employs resilient routing?
✦ "what's the probability of packet delivery?"
✦ "what's the expected path length?"

✦... the network employs traffic engineering?

Probabilistic Network Behavior

Most of the time, networks behave deterministically.

But what if...

✦ ... a link or switch fails?

✦ ... the network employs resilient routing?
✦ "what's the probability of packet delivery?"
✦ "what's the expected path length?"

✦... the network employs traffic engineering?
✦ "what's the expected congestion of this link?"

Probabilistic
Network Verification

Probabilistic NetKAT

A DSL for programming, modeling &
reasoning about probabilistic networks

Probabilistic NetKAT

[ESOP '16] [POPL '17]

What ProbNetKAT can do

What ProbNetKAT can do
Verify reachability properties

What ProbNetKAT can do
Verify reachability properties
✦ but for probabilistic networks

What ProbNetKAT can do
Verify reachability properties
✦ but for probabilistic networks

Verify fault tolerance

What ProbNetKAT can do
Verify reachability properties
✦ but for probabilistic networks

Verify fault tolerance
✦ k-resilience

What ProbNetKAT can do
Verify reachability properties
✦ but for probabilistic networks

Verify fault tolerance
✦ k-resilience
✦ "is scheme A is more resilient than scheme B?"

What ProbNetKAT can do
Verify reachability properties
✦ but for probabilistic networks

Verify fault tolerance
✦ k-resilience
✦ "is scheme A is more resilient than scheme B?"
✦ probability of packet delivery

What ProbNetKAT can do
Verify reachability properties
✦ but for probabilistic networks

Verify fault tolerance
✦ k-resilience
✦ "is scheme A is more resilient than scheme B?"
✦ probability of packet delivery

Compute quantitative network metrics

What ProbNetKAT can do
Verify reachability properties
✦ but for probabilistic networks

Verify fault tolerance
✦ k-resilience
✦ "is scheme A is more resilient than scheme B?"
✦ probability of packet delivery

Compute quantitative network metrics
✦ "expected number of hops?"

What ProbNetKAT can do
Verify reachability properties
✦ but for probabilistic networks

Verify fault tolerance
✦ k-resilience
✦ "is scheme A is more resilient than scheme B?"
✦ probability of packet delivery

Compute quantitative network metrics
✦ "expected number of hops?"
✦ "expected link congestion?"

What ProbNetKAT can do
Verify reachability properties
✦ but for probabilistic networks

Verify fault tolerance
✦ k-resilience
✦ "is scheme A is more resilient than scheme B?"
✦ probability of packet delivery

Compute quantitative network metrics
✦ "expected number of hops?"
✦ "expected link congestion?"
✦ computes analytical solution, not approximation

Case Study

USENIX Association 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 399

F10: A Fault-Tolerant Engineered Network
Vincent Liu, Daniel Halperin, Arvind Krishnamurthy, Thomas Anderson

University of Washington

Abstract
The data center network is increasingly a cost, reliabil-
ity and performance bottleneck for cloud computing. Al-
though multi-tree topologies can provide scalable band-
width and traditional routing algorithms can provide even-
tual fault tolerance, we argue that recovery speed can be
dramatically improved through the co-design of the net-
work topology, routing algorithm and failure detector. We
create an engineered network and routing protocol that di-
rectly address the failure characteristics observed in data
centers. At the core of our proposal is a novel network
topology that has many of the same desirable properties
as FatTrees, but with much better fault recovery prop-
erties. We then create a series of failover protocols that
benefit from this topology and are designed to cascade
and complement each other. The resulting system, F10,
can almost instantaneously reestablish connectivity and
load balance, even in the presence of multiple failures.
Our results show that following network link and switch
failures, F10 has less than 1/7th the packet loss of cur-
rent schemes. A trace-driven evaluation of MapReduce
performance shows that F10’s lower packet loss yields a
median application-level 30% speedup.

1 Introduction
Data center networks are an increasingly important com-
ponent to the cost, reliability and performance of cloud
services. This has led to recent efforts by the network re-
search community to explore new topologies [11, 12, 13],
new routing protocols [11] and new network manage-
ment layers [3, 4, 20], with a goal of improving network
cost-effectiveness, fault tolerance and scalability.

A state of the art approach is taken by Al-Fares et al. [3]
and its followup project PortLand [20]. In these systems,
the data center network is constructed in a multi-rooted
tree structure called a FatTree (inspired by fat-trees [17])
of inexpensive, commodity switches. These proposals
provide scalability, both in terms of port count and the
overall bisection bandwidth of the network. They also
deliver better performance at low costs, primarily due to
their use of commodity switches.

The use of a large number of commodity switches, how-
ever, opens up questions regarding what happens when
links and switches fail. A FatTree has redundant paths
between any pair of hosts. If end host operating system
changes are possible between these end hosts, the network
can be set up to provide multiple paths. The end host man-
ages packet loss and congestion across the paths using
MPTCP [22]. In many cases, the data center operator is

not in control of the OS, requiring a network-level solu-
tion to fault tolerance. A consequence of our work is to
show that entirely network-level failure recovery can be
practical and nearly instantaneous in a data center setting.

Addressing this need for network-layer recovery, Fat-
Tree architectures have proposed using a centralized man-
ager that collects topology and failure information from
the switches. It then periodically generates and dissemi-
nates back to the switches and end-hosts alternate sets of
routes to avoid failures. Centralized route management
is both simple and flexible—a reasonable design choice
provided that failures do not occur very often.

Recent measurements of network-layer failures in data
centers, however, have shown that failures are frequent
and disruptive [10]. Network-layer failures can reduce the
volume of traffic delivered by more than 40%, even when
the underlying network is designed for failure resilience.
As data centers grow, the probability of network failures
and the consequent disruptions on the system as a whole
will likely increase, further exacerbating the problem.

Our goal is to co-design a topology and set of proto-
cols that admit near-instantaneous, fine-grained, localized,
network-level recovery and rebalancing for common-case
network failures. Because the network is already a signifi-
cant part of the cost of the data center, we limit ourselves
to not introducing any additional hardware relative to
PortLand. Other work has shown that local repair is pos-
sible at the cost of significant added hardware relative to
a standard FatTree [9, 12, 13], so our work can be seen as
either improving the speed of repair in FatTree and other
multi-tree networks or in reducing the hardware cost of
fast repair in more general networks. A limitation of our
work is that we assume that we can change both the net-
work topology and the protocols used between network
switches.

Our system is called F10 (the Fault-Tolerant Engi-
neered Network), a network topology and a set of proto-
cols that can recover rapidly from almost all data center
network failures. We design a novel topology to make it
easier to do localized repair and rebalancing after failures.
This topology is applicable to the FatTree and other multi-
tree networks. We then redesign the routing protocols to
take advantage of the modified topology. To satisfy the
need for extremely fast failover, we use a local recov-
ery mechanism that reacts almost instantaneously at the
cost of additional latency and increased congestion. Some
failures are not short-term, so local rerouting eventually
triggers a slightly slower pushback mechanism that redi-
rects traffic flows before they reach the faulty components.

1

[NSDI'13]

Case Study

USENIX Association 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 399

F10: A Fault-Tolerant Engineered Network
Vincent Liu, Daniel Halperin, Arvind Krishnamurthy, Thomas Anderson

University of Washington

Abstract
The data center network is increasingly a cost, reliabil-
ity and performance bottleneck for cloud computing. Al-
though multi-tree topologies can provide scalable band-
width and traditional routing algorithms can provide even-
tual fault tolerance, we argue that recovery speed can be
dramatically improved through the co-design of the net-
work topology, routing algorithm and failure detector. We
create an engineered network and routing protocol that di-
rectly address the failure characteristics observed in data
centers. At the core of our proposal is a novel network
topology that has many of the same desirable properties
as FatTrees, but with much better fault recovery prop-
erties. We then create a series of failover protocols that
benefit from this topology and are designed to cascade
and complement each other. The resulting system, F10,
can almost instantaneously reestablish connectivity and
load balance, even in the presence of multiple failures.
Our results show that following network link and switch
failures, F10 has less than 1/7th the packet loss of cur-
rent schemes. A trace-driven evaluation of MapReduce
performance shows that F10’s lower packet loss yields a
median application-level 30% speedup.

1 Introduction
Data center networks are an increasingly important com-
ponent to the cost, reliability and performance of cloud
services. This has led to recent efforts by the network re-
search community to explore new topologies [11, 12, 13],
new routing protocols [11] and new network manage-
ment layers [3, 4, 20], with a goal of improving network
cost-effectiveness, fault tolerance and scalability.

A state of the art approach is taken by Al-Fares et al. [3]
and its followup project PortLand [20]. In these systems,
the data center network is constructed in a multi-rooted
tree structure called a FatTree (inspired by fat-trees [17])
of inexpensive, commodity switches. These proposals
provide scalability, both in terms of port count and the
overall bisection bandwidth of the network. They also
deliver better performance at low costs, primarily due to
their use of commodity switches.

The use of a large number of commodity switches, how-
ever, opens up questions regarding what happens when
links and switches fail. A FatTree has redundant paths
between any pair of hosts. If end host operating system
changes are possible between these end hosts, the network
can be set up to provide multiple paths. The end host man-
ages packet loss and congestion across the paths using
MPTCP [22]. In many cases, the data center operator is

not in control of the OS, requiring a network-level solu-
tion to fault tolerance. A consequence of our work is to
show that entirely network-level failure recovery can be
practical and nearly instantaneous in a data center setting.

Addressing this need for network-layer recovery, Fat-
Tree architectures have proposed using a centralized man-
ager that collects topology and failure information from
the switches. It then periodically generates and dissemi-
nates back to the switches and end-hosts alternate sets of
routes to avoid failures. Centralized route management
is both simple and flexible—a reasonable design choice
provided that failures do not occur very often.

Recent measurements of network-layer failures in data
centers, however, have shown that failures are frequent
and disruptive [10]. Network-layer failures can reduce the
volume of traffic delivered by more than 40%, even when
the underlying network is designed for failure resilience.
As data centers grow, the probability of network failures
and the consequent disruptions on the system as a whole
will likely increase, further exacerbating the problem.

Our goal is to co-design a topology and set of proto-
cols that admit near-instantaneous, fine-grained, localized,
network-level recovery and rebalancing for common-case
network failures. Because the network is already a signifi-
cant part of the cost of the data center, we limit ourselves
to not introducing any additional hardware relative to
PortLand. Other work has shown that local repair is pos-
sible at the cost of significant added hardware relative to
a standard FatTree [9, 12, 13], so our work can be seen as
either improving the speed of repair in FatTree and other
multi-tree networks or in reducing the hardware cost of
fast repair in more general networks. A limitation of our
work is that we assume that we can change both the net-
work topology and the protocols used between network
switches.

Our system is called F10 (the Fault-Tolerant Engi-
neered Network), a network topology and a set of proto-
cols that can recover rapidly from almost all data center
network failures. We design a novel topology to make it
easier to do localized repair and rebalancing after failures.
This topology is applicable to the FatTree and other multi-
tree networks. We then redesign the routing protocols to
take advantage of the modified topology. To satisfy the
need for extremely fast failover, we use a local recov-
ery mechanism that reacts almost instantaneously at the
cost of additional latency and increased congestion. Some
failures are not short-term, so local rerouting eventually
triggers a slightly slower pushback mechanism that redi-
rects traffic flows before they reach the faulty components.

1

Motivation
✦ short-term failures in data centers are common

[NSDI'13]

Case Study

USENIX Association 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 399

F10: A Fault-Tolerant Engineered Network
Vincent Liu, Daniel Halperin, Arvind Krishnamurthy, Thomas Anderson

University of Washington

Abstract
The data center network is increasingly a cost, reliabil-
ity and performance bottleneck for cloud computing. Al-
though multi-tree topologies can provide scalable band-
width and traditional routing algorithms can provide even-
tual fault tolerance, we argue that recovery speed can be
dramatically improved through the co-design of the net-
work topology, routing algorithm and failure detector. We
create an engineered network and routing protocol that di-
rectly address the failure characteristics observed in data
centers. At the core of our proposal is a novel network
topology that has many of the same desirable properties
as FatTrees, but with much better fault recovery prop-
erties. We then create a series of failover protocols that
benefit from this topology and are designed to cascade
and complement each other. The resulting system, F10,
can almost instantaneously reestablish connectivity and
load balance, even in the presence of multiple failures.
Our results show that following network link and switch
failures, F10 has less than 1/7th the packet loss of cur-
rent schemes. A trace-driven evaluation of MapReduce
performance shows that F10’s lower packet loss yields a
median application-level 30% speedup.

1 Introduction
Data center networks are an increasingly important com-
ponent to the cost, reliability and performance of cloud
services. This has led to recent efforts by the network re-
search community to explore new topologies [11, 12, 13],
new routing protocols [11] and new network manage-
ment layers [3, 4, 20], with a goal of improving network
cost-effectiveness, fault tolerance and scalability.

A state of the art approach is taken by Al-Fares et al. [3]
and its followup project PortLand [20]. In these systems,
the data center network is constructed in a multi-rooted
tree structure called a FatTree (inspired by fat-trees [17])
of inexpensive, commodity switches. These proposals
provide scalability, both in terms of port count and the
overall bisection bandwidth of the network. They also
deliver better performance at low costs, primarily due to
their use of commodity switches.

The use of a large number of commodity switches, how-
ever, opens up questions regarding what happens when
links and switches fail. A FatTree has redundant paths
between any pair of hosts. If end host operating system
changes are possible between these end hosts, the network
can be set up to provide multiple paths. The end host man-
ages packet loss and congestion across the paths using
MPTCP [22]. In many cases, the data center operator is

not in control of the OS, requiring a network-level solu-
tion to fault tolerance. A consequence of our work is to
show that entirely network-level failure recovery can be
practical and nearly instantaneous in a data center setting.

Addressing this need for network-layer recovery, Fat-
Tree architectures have proposed using a centralized man-
ager that collects topology and failure information from
the switches. It then periodically generates and dissemi-
nates back to the switches and end-hosts alternate sets of
routes to avoid failures. Centralized route management
is both simple and flexible—a reasonable design choice
provided that failures do not occur very often.

Recent measurements of network-layer failures in data
centers, however, have shown that failures are frequent
and disruptive [10]. Network-layer failures can reduce the
volume of traffic delivered by more than 40%, even when
the underlying network is designed for failure resilience.
As data centers grow, the probability of network failures
and the consequent disruptions on the system as a whole
will likely increase, further exacerbating the problem.

Our goal is to co-design a topology and set of proto-
cols that admit near-instantaneous, fine-grained, localized,
network-level recovery and rebalancing for common-case
network failures. Because the network is already a signifi-
cant part of the cost of the data center, we limit ourselves
to not introducing any additional hardware relative to
PortLand. Other work has shown that local repair is pos-
sible at the cost of significant added hardware relative to
a standard FatTree [9, 12, 13], so our work can be seen as
either improving the speed of repair in FatTree and other
multi-tree networks or in reducing the hardware cost of
fast repair in more general networks. A limitation of our
work is that we assume that we can change both the net-
work topology and the protocols used between network
switches.

Our system is called F10 (the Fault-Tolerant Engi-
neered Network), a network topology and a set of proto-
cols that can recover rapidly from almost all data center
network failures. We design a novel topology to make it
easier to do localized repair and rebalancing after failures.
This topology is applicable to the FatTree and other multi-
tree networks. We then redesign the routing protocols to
take advantage of the modified topology. To satisfy the
need for extremely fast failover, we use a local recov-
ery mechanism that reacts almost instantaneously at the
cost of additional latency and increased congestion. Some
failures are not short-term, so local rerouting eventually
triggers a slightly slower pushback mechanism that redi-
rects traffic flows before they reach the faulty components.

1

Motivation
✦ short-term failures in data centers are common
✦ application performance suffers

[NSDI'13]

Case Study

USENIX Association 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 399

F10: A Fault-Tolerant Engineered Network
Vincent Liu, Daniel Halperin, Arvind Krishnamurthy, Thomas Anderson

University of Washington

Abstract
The data center network is increasingly a cost, reliabil-
ity and performance bottleneck for cloud computing. Al-
though multi-tree topologies can provide scalable band-
width and traditional routing algorithms can provide even-
tual fault tolerance, we argue that recovery speed can be
dramatically improved through the co-design of the net-
work topology, routing algorithm and failure detector. We
create an engineered network and routing protocol that di-
rectly address the failure characteristics observed in data
centers. At the core of our proposal is a novel network
topology that has many of the same desirable properties
as FatTrees, but with much better fault recovery prop-
erties. We then create a series of failover protocols that
benefit from this topology and are designed to cascade
and complement each other. The resulting system, F10,
can almost instantaneously reestablish connectivity and
load balance, even in the presence of multiple failures.
Our results show that following network link and switch
failures, F10 has less than 1/7th the packet loss of cur-
rent schemes. A trace-driven evaluation of MapReduce
performance shows that F10’s lower packet loss yields a
median application-level 30% speedup.

1 Introduction
Data center networks are an increasingly important com-
ponent to the cost, reliability and performance of cloud
services. This has led to recent efforts by the network re-
search community to explore new topologies [11, 12, 13],
new routing protocols [11] and new network manage-
ment layers [3, 4, 20], with a goal of improving network
cost-effectiveness, fault tolerance and scalability.

A state of the art approach is taken by Al-Fares et al. [3]
and its followup project PortLand [20]. In these systems,
the data center network is constructed in a multi-rooted
tree structure called a FatTree (inspired by fat-trees [17])
of inexpensive, commodity switches. These proposals
provide scalability, both in terms of port count and the
overall bisection bandwidth of the network. They also
deliver better performance at low costs, primarily due to
their use of commodity switches.

The use of a large number of commodity switches, how-
ever, opens up questions regarding what happens when
links and switches fail. A FatTree has redundant paths
between any pair of hosts. If end host operating system
changes are possible between these end hosts, the network
can be set up to provide multiple paths. The end host man-
ages packet loss and congestion across the paths using
MPTCP [22]. In many cases, the data center operator is

not in control of the OS, requiring a network-level solu-
tion to fault tolerance. A consequence of our work is to
show that entirely network-level failure recovery can be
practical and nearly instantaneous in a data center setting.

Addressing this need for network-layer recovery, Fat-
Tree architectures have proposed using a centralized man-
ager that collects topology and failure information from
the switches. It then periodically generates and dissemi-
nates back to the switches and end-hosts alternate sets of
routes to avoid failures. Centralized route management
is both simple and flexible—a reasonable design choice
provided that failures do not occur very often.

Recent measurements of network-layer failures in data
centers, however, have shown that failures are frequent
and disruptive [10]. Network-layer failures can reduce the
volume of traffic delivered by more than 40%, even when
the underlying network is designed for failure resilience.
As data centers grow, the probability of network failures
and the consequent disruptions on the system as a whole
will likely increase, further exacerbating the problem.

Our goal is to co-design a topology and set of proto-
cols that admit near-instantaneous, fine-grained, localized,
network-level recovery and rebalancing for common-case
network failures. Because the network is already a signifi-
cant part of the cost of the data center, we limit ourselves
to not introducing any additional hardware relative to
PortLand. Other work has shown that local repair is pos-
sible at the cost of significant added hardware relative to
a standard FatTree [9, 12, 13], so our work can be seen as
either improving the speed of repair in FatTree and other
multi-tree networks or in reducing the hardware cost of
fast repair in more general networks. A limitation of our
work is that we assume that we can change both the net-
work topology and the protocols used between network
switches.

Our system is called F10 (the Fault-Tolerant Engi-
neered Network), a network topology and a set of proto-
cols that can recover rapidly from almost all data center
network failures. We design a novel topology to make it
easier to do localized repair and rebalancing after failures.
This topology is applicable to the FatTree and other multi-
tree networks. We then redesign the routing protocols to
take advantage of the modified topology. To satisfy the
need for extremely fast failover, we use a local recov-
ery mechanism that reacts almost instantaneously at the
cost of additional latency and increased congestion. Some
failures are not short-term, so local rerouting eventually
triggers a slightly slower pushback mechanism that redi-
rects traffic flows before they reach the faulty components.

1

Motivation
✦ short-term failures in data centers are common
✦ application performance suffers
✦ despite 1:1 redundancy!

[NSDI'13]

Case Study

USENIX Association 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 399

F10: A Fault-Tolerant Engineered Network
Vincent Liu, Daniel Halperin, Arvind Krishnamurthy, Thomas Anderson

University of Washington

Abstract
The data center network is increasingly a cost, reliabil-
ity and performance bottleneck for cloud computing. Al-
though multi-tree topologies can provide scalable band-
width and traditional routing algorithms can provide even-
tual fault tolerance, we argue that recovery speed can be
dramatically improved through the co-design of the net-
work topology, routing algorithm and failure detector. We
create an engineered network and routing protocol that di-
rectly address the failure characteristics observed in data
centers. At the core of our proposal is a novel network
topology that has many of the same desirable properties
as FatTrees, but with much better fault recovery prop-
erties. We then create a series of failover protocols that
benefit from this topology and are designed to cascade
and complement each other. The resulting system, F10,
can almost instantaneously reestablish connectivity and
load balance, even in the presence of multiple failures.
Our results show that following network link and switch
failures, F10 has less than 1/7th the packet loss of cur-
rent schemes. A trace-driven evaluation of MapReduce
performance shows that F10’s lower packet loss yields a
median application-level 30% speedup.

1 Introduction
Data center networks are an increasingly important com-
ponent to the cost, reliability and performance of cloud
services. This has led to recent efforts by the network re-
search community to explore new topologies [11, 12, 13],
new routing protocols [11] and new network manage-
ment layers [3, 4, 20], with a goal of improving network
cost-effectiveness, fault tolerance and scalability.

A state of the art approach is taken by Al-Fares et al. [3]
and its followup project PortLand [20]. In these systems,
the data center network is constructed in a multi-rooted
tree structure called a FatTree (inspired by fat-trees [17])
of inexpensive, commodity switches. These proposals
provide scalability, both in terms of port count and the
overall bisection bandwidth of the network. They also
deliver better performance at low costs, primarily due to
their use of commodity switches.

The use of a large number of commodity switches, how-
ever, opens up questions regarding what happens when
links and switches fail. A FatTree has redundant paths
between any pair of hosts. If end host operating system
changes are possible between these end hosts, the network
can be set up to provide multiple paths. The end host man-
ages packet loss and congestion across the paths using
MPTCP [22]. In many cases, the data center operator is

not in control of the OS, requiring a network-level solu-
tion to fault tolerance. A consequence of our work is to
show that entirely network-level failure recovery can be
practical and nearly instantaneous in a data center setting.

Addressing this need for network-layer recovery, Fat-
Tree architectures have proposed using a centralized man-
ager that collects topology and failure information from
the switches. It then periodically generates and dissemi-
nates back to the switches and end-hosts alternate sets of
routes to avoid failures. Centralized route management
is both simple and flexible—a reasonable design choice
provided that failures do not occur very often.

Recent measurements of network-layer failures in data
centers, however, have shown that failures are frequent
and disruptive [10]. Network-layer failures can reduce the
volume of traffic delivered by more than 40%, even when
the underlying network is designed for failure resilience.
As data centers grow, the probability of network failures
and the consequent disruptions on the system as a whole
will likely increase, further exacerbating the problem.

Our goal is to co-design a topology and set of proto-
cols that admit near-instantaneous, fine-grained, localized,
network-level recovery and rebalancing for common-case
network failures. Because the network is already a signifi-
cant part of the cost of the data center, we limit ourselves
to not introducing any additional hardware relative to
PortLand. Other work has shown that local repair is pos-
sible at the cost of significant added hardware relative to
a standard FatTree [9, 12, 13], so our work can be seen as
either improving the speed of repair in FatTree and other
multi-tree networks or in reducing the hardware cost of
fast repair in more general networks. A limitation of our
work is that we assume that we can change both the net-
work topology and the protocols used between network
switches.

Our system is called F10 (the Fault-Tolerant Engi-
neered Network), a network topology and a set of proto-
cols that can recover rapidly from almost all data center
network failures. We design a novel topology to make it
easier to do localized repair and rebalancing after failures.
This topology is applicable to the FatTree and other multi-
tree networks. We then redesign the routing protocols to
take advantage of the modified topology. To satisfy the
need for extremely fast failover, we use a local recov-
ery mechanism that reacts almost instantaneously at the
cost of additional latency and increased congestion. Some
failures are not short-term, so local rerouting eventually
triggers a slightly slower pushback mechanism that redi-
rects traffic flows before they reach the faulty components.

1

Motivation
✦ short-term failures in data centers are common
✦ application performance suffers
✦ despite 1:1 redundancy!

[NSDI'13]

Case Study

USENIX Association 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 399

F10: A Fault-Tolerant Engineered Network
Vincent Liu, Daniel Halperin, Arvind Krishnamurthy, Thomas Anderson

University of Washington

Abstract
The data center network is increasingly a cost, reliabil-
ity and performance bottleneck for cloud computing. Al-
though multi-tree topologies can provide scalable band-
width and traditional routing algorithms can provide even-
tual fault tolerance, we argue that recovery speed can be
dramatically improved through the co-design of the net-
work topology, routing algorithm and failure detector. We
create an engineered network and routing protocol that di-
rectly address the failure characteristics observed in data
centers. At the core of our proposal is a novel network
topology that has many of the same desirable properties
as FatTrees, but with much better fault recovery prop-
erties. We then create a series of failover protocols that
benefit from this topology and are designed to cascade
and complement each other. The resulting system, F10,
can almost instantaneously reestablish connectivity and
load balance, even in the presence of multiple failures.
Our results show that following network link and switch
failures, F10 has less than 1/7th the packet loss of cur-
rent schemes. A trace-driven evaluation of MapReduce
performance shows that F10’s lower packet loss yields a
median application-level 30% speedup.

1 Introduction
Data center networks are an increasingly important com-
ponent to the cost, reliability and performance of cloud
services. This has led to recent efforts by the network re-
search community to explore new topologies [11, 12, 13],
new routing protocols [11] and new network manage-
ment layers [3, 4, 20], with a goal of improving network
cost-effectiveness, fault tolerance and scalability.

A state of the art approach is taken by Al-Fares et al. [3]
and its followup project PortLand [20]. In these systems,
the data center network is constructed in a multi-rooted
tree structure called a FatTree (inspired by fat-trees [17])
of inexpensive, commodity switches. These proposals
provide scalability, both in terms of port count and the
overall bisection bandwidth of the network. They also
deliver better performance at low costs, primarily due to
their use of commodity switches.

The use of a large number of commodity switches, how-
ever, opens up questions regarding what happens when
links and switches fail. A FatTree has redundant paths
between any pair of hosts. If end host operating system
changes are possible between these end hosts, the network
can be set up to provide multiple paths. The end host man-
ages packet loss and congestion across the paths using
MPTCP [22]. In many cases, the data center operator is

not in control of the OS, requiring a network-level solu-
tion to fault tolerance. A consequence of our work is to
show that entirely network-level failure recovery can be
practical and nearly instantaneous in a data center setting.

Addressing this need for network-layer recovery, Fat-
Tree architectures have proposed using a centralized man-
ager that collects topology and failure information from
the switches. It then periodically generates and dissemi-
nates back to the switches and end-hosts alternate sets of
routes to avoid failures. Centralized route management
is both simple and flexible—a reasonable design choice
provided that failures do not occur very often.

Recent measurements of network-layer failures in data
centers, however, have shown that failures are frequent
and disruptive [10]. Network-layer failures can reduce the
volume of traffic delivered by more than 40%, even when
the underlying network is designed for failure resilience.
As data centers grow, the probability of network failures
and the consequent disruptions on the system as a whole
will likely increase, further exacerbating the problem.

Our goal is to co-design a topology and set of proto-
cols that admit near-instantaneous, fine-grained, localized,
network-level recovery and rebalancing for common-case
network failures. Because the network is already a signifi-
cant part of the cost of the data center, we limit ourselves
to not introducing any additional hardware relative to
PortLand. Other work has shown that local repair is pos-
sible at the cost of significant added hardware relative to
a standard FatTree [9, 12, 13], so our work can be seen as
either improving the speed of repair in FatTree and other
multi-tree networks or in reducing the hardware cost of
fast repair in more general networks. A limitation of our
work is that we assume that we can change both the net-
work topology and the protocols used between network
switches.

Our system is called F10 (the Fault-Tolerant Engi-
neered Network), a network topology and a set of proto-
cols that can recover rapidly from almost all data center
network failures. We design a novel topology to make it
easier to do localized repair and rebalancing after failures.
This topology is applicable to the FatTree and other multi-
tree networks. We then redesign the routing protocols to
take advantage of the modified topology. To satisfy the
need for extremely fast failover, we use a local recov-
ery mechanism that reacts almost instantaneously at the
cost of additional latency and increased congestion. Some
failures are not short-term, so local rerouting eventually
triggers a slightly slower pushback mechanism that redi-
rects traffic flows before they reach the faulty components.

1

Motivation
✦ short-term failures in data centers are common
✦ application performance suffers
✦ despite 1:1 redundancy!

Solution

[NSDI'13]

Case Study

USENIX Association 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 399

F10: A Fault-Tolerant Engineered Network
Vincent Liu, Daniel Halperin, Arvind Krishnamurthy, Thomas Anderson

University of Washington

Abstract
The data center network is increasingly a cost, reliabil-
ity and performance bottleneck for cloud computing. Al-
though multi-tree topologies can provide scalable band-
width and traditional routing algorithms can provide even-
tual fault tolerance, we argue that recovery speed can be
dramatically improved through the co-design of the net-
work topology, routing algorithm and failure detector. We
create an engineered network and routing protocol that di-
rectly address the failure characteristics observed in data
centers. At the core of our proposal is a novel network
topology that has many of the same desirable properties
as FatTrees, but with much better fault recovery prop-
erties. We then create a series of failover protocols that
benefit from this topology and are designed to cascade
and complement each other. The resulting system, F10,
can almost instantaneously reestablish connectivity and
load balance, even in the presence of multiple failures.
Our results show that following network link and switch
failures, F10 has less than 1/7th the packet loss of cur-
rent schemes. A trace-driven evaluation of MapReduce
performance shows that F10’s lower packet loss yields a
median application-level 30% speedup.

1 Introduction
Data center networks are an increasingly important com-
ponent to the cost, reliability and performance of cloud
services. This has led to recent efforts by the network re-
search community to explore new topologies [11, 12, 13],
new routing protocols [11] and new network manage-
ment layers [3, 4, 20], with a goal of improving network
cost-effectiveness, fault tolerance and scalability.

A state of the art approach is taken by Al-Fares et al. [3]
and its followup project PortLand [20]. In these systems,
the data center network is constructed in a multi-rooted
tree structure called a FatTree (inspired by fat-trees [17])
of inexpensive, commodity switches. These proposals
provide scalability, both in terms of port count and the
overall bisection bandwidth of the network. They also
deliver better performance at low costs, primarily due to
their use of commodity switches.

The use of a large number of commodity switches, how-
ever, opens up questions regarding what happens when
links and switches fail. A FatTree has redundant paths
between any pair of hosts. If end host operating system
changes are possible between these end hosts, the network
can be set up to provide multiple paths. The end host man-
ages packet loss and congestion across the paths using
MPTCP [22]. In many cases, the data center operator is

not in control of the OS, requiring a network-level solu-
tion to fault tolerance. A consequence of our work is to
show that entirely network-level failure recovery can be
practical and nearly instantaneous in a data center setting.

Addressing this need for network-layer recovery, Fat-
Tree architectures have proposed using a centralized man-
ager that collects topology and failure information from
the switches. It then periodically generates and dissemi-
nates back to the switches and end-hosts alternate sets of
routes to avoid failures. Centralized route management
is both simple and flexible—a reasonable design choice
provided that failures do not occur very often.

Recent measurements of network-layer failures in data
centers, however, have shown that failures are frequent
and disruptive [10]. Network-layer failures can reduce the
volume of traffic delivered by more than 40%, even when
the underlying network is designed for failure resilience.
As data centers grow, the probability of network failures
and the consequent disruptions on the system as a whole
will likely increase, further exacerbating the problem.

Our goal is to co-design a topology and set of proto-
cols that admit near-instantaneous, fine-grained, localized,
network-level recovery and rebalancing for common-case
network failures. Because the network is already a signifi-
cant part of the cost of the data center, we limit ourselves
to not introducing any additional hardware relative to
PortLand. Other work has shown that local repair is pos-
sible at the cost of significant added hardware relative to
a standard FatTree [9, 12, 13], so our work can be seen as
either improving the speed of repair in FatTree and other
multi-tree networks or in reducing the hardware cost of
fast repair in more general networks. A limitation of our
work is that we assume that we can change both the net-
work topology and the protocols used between network
switches.

Our system is called F10 (the Fault-Tolerant Engi-
neered Network), a network topology and a set of proto-
cols that can recover rapidly from almost all data center
network failures. We design a novel topology to make it
easier to do localized repair and rebalancing after failures.
This topology is applicable to the FatTree and other multi-
tree networks. We then redesign the routing protocols to
take advantage of the modified topology. To satisfy the
need for extremely fast failover, we use a local recov-
ery mechanism that reacts almost instantaneously at the
cost of additional latency and increased congestion. Some
failures are not short-term, so local rerouting eventually
triggers a slightly slower pushback mechanism that redi-
rects traffic flows before they reach the faulty components.

1

Motivation
✦ short-term failures in data centers are common
✦ application performance suffers
✦ despite 1:1 redundancy!

Solution
✦ detect failures of neighboring links & switches...

[NSDI'13]

Case Study

USENIX Association 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 399

F10: A Fault-Tolerant Engineered Network
Vincent Liu, Daniel Halperin, Arvind Krishnamurthy, Thomas Anderson

University of Washington

Abstract
The data center network is increasingly a cost, reliabil-
ity and performance bottleneck for cloud computing. Al-
though multi-tree topologies can provide scalable band-
width and traditional routing algorithms can provide even-
tual fault tolerance, we argue that recovery speed can be
dramatically improved through the co-design of the net-
work topology, routing algorithm and failure detector. We
create an engineered network and routing protocol that di-
rectly address the failure characteristics observed in data
centers. At the core of our proposal is a novel network
topology that has many of the same desirable properties
as FatTrees, but with much better fault recovery prop-
erties. We then create a series of failover protocols that
benefit from this topology and are designed to cascade
and complement each other. The resulting system, F10,
can almost instantaneously reestablish connectivity and
load balance, even in the presence of multiple failures.
Our results show that following network link and switch
failures, F10 has less than 1/7th the packet loss of cur-
rent schemes. A trace-driven evaluation of MapReduce
performance shows that F10’s lower packet loss yields a
median application-level 30% speedup.

1 Introduction
Data center networks are an increasingly important com-
ponent to the cost, reliability and performance of cloud
services. This has led to recent efforts by the network re-
search community to explore new topologies [11, 12, 13],
new routing protocols [11] and new network manage-
ment layers [3, 4, 20], with a goal of improving network
cost-effectiveness, fault tolerance and scalability.

A state of the art approach is taken by Al-Fares et al. [3]
and its followup project PortLand [20]. In these systems,
the data center network is constructed in a multi-rooted
tree structure called a FatTree (inspired by fat-trees [17])
of inexpensive, commodity switches. These proposals
provide scalability, both in terms of port count and the
overall bisection bandwidth of the network. They also
deliver better performance at low costs, primarily due to
their use of commodity switches.

The use of a large number of commodity switches, how-
ever, opens up questions regarding what happens when
links and switches fail. A FatTree has redundant paths
between any pair of hosts. If end host operating system
changes are possible between these end hosts, the network
can be set up to provide multiple paths. The end host man-
ages packet loss and congestion across the paths using
MPTCP [22]. In many cases, the data center operator is

not in control of the OS, requiring a network-level solu-
tion to fault tolerance. A consequence of our work is to
show that entirely network-level failure recovery can be
practical and nearly instantaneous in a data center setting.

Addressing this need for network-layer recovery, Fat-
Tree architectures have proposed using a centralized man-
ager that collects topology and failure information from
the switches. It then periodically generates and dissemi-
nates back to the switches and end-hosts alternate sets of
routes to avoid failures. Centralized route management
is both simple and flexible—a reasonable design choice
provided that failures do not occur very often.

Recent measurements of network-layer failures in data
centers, however, have shown that failures are frequent
and disruptive [10]. Network-layer failures can reduce the
volume of traffic delivered by more than 40%, even when
the underlying network is designed for failure resilience.
As data centers grow, the probability of network failures
and the consequent disruptions on the system as a whole
will likely increase, further exacerbating the problem.

Our goal is to co-design a topology and set of proto-
cols that admit near-instantaneous, fine-grained, localized,
network-level recovery and rebalancing for common-case
network failures. Because the network is already a signifi-
cant part of the cost of the data center, we limit ourselves
to not introducing any additional hardware relative to
PortLand. Other work has shown that local repair is pos-
sible at the cost of significant added hardware relative to
a standard FatTree [9, 12, 13], so our work can be seen as
either improving the speed of repair in FatTree and other
multi-tree networks or in reducing the hardware cost of
fast repair in more general networks. A limitation of our
work is that we assume that we can change both the net-
work topology and the protocols used between network
switches.

Our system is called F10 (the Fault-Tolerant Engi-
neered Network), a network topology and a set of proto-
cols that can recover rapidly from almost all data center
network failures. We design a novel topology to make it
easier to do localized repair and rebalancing after failures.
This topology is applicable to the FatTree and other multi-
tree networks. We then redesign the routing protocols to
take advantage of the modified topology. To satisfy the
need for extremely fast failover, we use a local recov-
ery mechanism that reacts almost instantaneously at the
cost of additional latency and increased congestion. Some
failures are not short-term, so local rerouting eventually
triggers a slightly slower pushback mechanism that redi-
rects traffic flows before they reach the faulty components.

1

Motivation
✦ short-term failures in data centers are common
✦ application performance suffers
✦ despite 1:1 redundancy!

Solution
✦ detect failures of neighboring links & switches...
✦ ...and route around them

[NSDI'13]

Case Study: Topology

s1 s2

A

s3 s4

A0

s5 s6

A00

s7 s8

C

Edge

Aggregation

Core

An ABFatTree is much like a regular FatTree

Case Study: Topology

s1 s2

A

s3 s4

A0

s5 s6

A00

s7 s8

C

Edge

Aggregation

Core

An ABFatTree is much like a regular FatTree

Case Study: Topology

s1 s2

A

s3 s4

A0

s5 s6

A00

s7 s8

C

Edge

Aggregation

Core

An ABFatTree is much like a regular FatTree

Case Study: Topology

s1 s2

A

s3 s4

A0

s5 s6

A00

s7 s8

C

Edge

Aggregation

Core

An ABFatTree is much like a regular FatTree

Case Study: Topology

s1 s2

A

s3 s4

A0

s5 s6

A00

s7 s8

C

Edge

Aggregation

Core

An ABFatTree is much like a regular FatTree

But it provides shorter detours around failures

Case Study: Topology

s1 s2

A

s3 s4

A0

s5 s6

A00

s7 s8

C

Edge

Aggregation

Core

An ABFatTree is much like a regular FatTree

But it provides shorter detours around failures

Case Study: Topology

s1 s2

A

s3 s4

A0

s5 s6

A00

s7 s8

C

Edge

Aggregation

Core

An ABFatTree is much like a regular FatTree

But it provides shorter detours around failures

Case Study: Routing Schemes

We implemented F10 as a series of 3 refinements

Case Study: Routing Schemes

We implemented F10 as a series of 3 refinements
C

om
pl

ex
ity

Re
si

lie
nc

e

F100

F103

F103,5

Case Study: Routing Schemes

We implemented F10 as a series of 3 refinements
C

om
pl

ex
ity

Re
si

lie
nc

e

F100
shortest path routing

F103

F103,5

Case Study: Routing Schemes

We implemented F10 as a series of 3 refinements
C

om
pl

ex
ity

Re
si

lie
nc

e

F100
shortest path routing

F103
F100 + 3-hop rerouting

F103,5

Case Study: Routing Schemes

We implemented F10 as a series of 3 refinements
C

om
pl

ex
ity

Re
si

lie
nc

e

F100
shortest path routing

F103
F100 + 3-hop rerouting

F103,5
F103 + 5-hop rerouting

Case Study: Routing Schemes

We implemented F10 as a series of 3 refinements
C

om
pl

ex
ity

Re
si

lie
nc

e

F100
shortest path routing

F103
F100 + 3-hop rerouting

F103,5
F103 + 5-hop rerouting

Requires State

Case Study: k-resilience
We verified k-resilience using ProbNetKAT

Case Study: k-resilience

k = number of failures ✔ = 100% packet delivery

Sophistication of Routing Scheme

Probabilistic Program Equivalence for NetKAT 21

k F100 F103 F103,5
0 3 3 7
1 7 3 7
2 7 3 7
3 7 7 7
4 7 7 7
1 7 7 7

Table 1. Evaluating k-resilience of F10.

k
compare

(F100, F103)
compare

(F103, F103,5)
compare

(F103,5, teleport)

0 ⌘ ⌘ ⌘
1 < ⌘ ⌘
2 < ⌘ ⌘
3 < < ⌘
4 < < <
1 < < <

Table 2. Comparing schemes under k failures.

The ingress predicate in is a disjunction of switch-and-port tests over all ingress locations. This �rst
model is embedded into a re�ned model bM(p, t , f) that integrates the failure model and declares all
necessary local variables that track the healthiness of individual ports:

bM(p, t , f) , var up1 1 in
. . .

var upd 1 in
M((f ; p), t)

Here d denotes the maximum degree of all nodes in the FatTree and AB FatTree topologies from
Figures 5 and 6, which we encode as programs fa�ree and abfa�ree. much like in Section 2.2.

6.3 Checking invariants
We can gain con�dence in the correctness of our implementation of F10 by verifying that it
maintains certain key invariants. As an example, recall our implementation of F103,5: when we
perform 5-hop rerouting, we use an extra bit (default) to notify the next hop aggregation switch to
forward the packet downwards instead of performing default forwarding. The next hop follows
this instruction and also sets default back to 1. By design, the packet can not be delivered to the
destination with default set to 0.

To verify this property, we check the following equivalence:

8t ,k : bM(F103,5, t, fk) ⌘ bM(F103,5, t, fk) ; default=1

We executed the check using our implementation for k 2 {0, 1, 2, 3, 4,1} and t 2 {fa�ree, abfa�ree}.
As discussed below, we actually failed to implement this feature correctly on our �rst attempt due
to a subtle bug—we neglected to initialize the default �ag to 1 at the ingress.

6.4 F10 routing with FatTree
We previously saw that the structure of FatTree doesn’t allow 3-hop rerouting on failures because
all subtrees are of the same type. This would mean that augmenting ECMP with 3-hop rerouting
should have no e�ect, i.e. 3-hop rerouting should never kick in and act as a no-op. To verify this,
we can check the following equivalence:

8k : bM(F100, fa�ree, fk) ⌘ bM(F103, fa�ree, fk)

Wehave used our implementation to check that this equivalence indeed holds fork 2 {0, 1, 2, 3, 4,1}.

We verified k-resilience using ProbNetKAT

Case Study: k-resilience

k = number of failures ✔ = 100% packet delivery

Sophistication of Routing Scheme

Probabilistic Program Equivalence for NetKAT 21

k F100 F103 F103,5
0 3 3 7
1 7 3 7
2 7 3 7
3 7 7 7
4 7 7 7
1 7 7 7

Table 1. Evaluating k-resilience of F10.

k
compare

(F100, F103)
compare

(F103, F103,5)
compare

(F103,5, teleport)

0 ⌘ ⌘ ⌘
1 < ⌘ ⌘
2 < ⌘ ⌘
3 < < ⌘
4 < < <
1 < < <

Table 2. Comparing schemes under k failures.

The ingress predicate in is a disjunction of switch-and-port tests over all ingress locations. This �rst
model is embedded into a re�ned model bM(p, t , f) that integrates the failure model and declares all
necessary local variables that track the healthiness of individual ports:

bM(p, t , f) , var up1 1 in
. . .

var upd 1 in
M((f ; p), t)

Here d denotes the maximum degree of all nodes in the FatTree and AB FatTree topologies from
Figures 5 and 6, which we encode as programs fa�ree and abfa�ree. much like in Section 2.2.

6.3 Checking invariants
We can gain con�dence in the correctness of our implementation of F10 by verifying that it
maintains certain key invariants. As an example, recall our implementation of F103,5: when we
perform 5-hop rerouting, we use an extra bit (default) to notify the next hop aggregation switch to
forward the packet downwards instead of performing default forwarding. The next hop follows
this instruction and also sets default back to 1. By design, the packet can not be delivered to the
destination with default set to 0.

To verify this property, we check the following equivalence:

8t ,k : bM(F103,5, t, fk) ⌘ bM(F103,5, t, fk) ; default=1

We executed the check using our implementation for k 2 {0, 1, 2, 3, 4,1} and t 2 {fa�ree, abfa�ree}.
As discussed below, we actually failed to implement this feature correctly on our �rst attempt due
to a subtle bug—we neglected to initialize the default �ag to 1 at the ingress.

6.4 F10 routing with FatTree
We previously saw that the structure of FatTree doesn’t allow 3-hop rerouting on failures because
all subtrees are of the same type. This would mean that augmenting ECMP with 3-hop rerouting
should have no e�ect, i.e. 3-hop rerouting should never kick in and act as a no-op. To verify this,
we can check the following equivalence:

8k : bM(F100, fa�ree, fk) ⌘ bM(F103, fa�ree, fk)

Wehave used our implementation to check that this equivalence indeed holds fork 2 {0, 1, 2, 3, 4,1}.

We verified k-resilience using ProbNetKAT

Case Study: k-resilience

k = number of failures ✔ = 100% packet delivery

Sophistication of Routing Scheme

Probabilistic Program Equivalence for NetKAT 21

k F100 F103 F103,5
0 3 3 7
1 7 3 7
2 7 3 7
3 7 7 7
4 7 7 7
1 7 7 7

Table 1. Evaluating k-resilience of F10.

k
compare

(F100, F103)
compare

(F103, F103,5)
compare

(F103,5, teleport)

0 ⌘ ⌘ ⌘
1 < ⌘ ⌘
2 < ⌘ ⌘
3 < < ⌘
4 < < <
1 < < <

Table 2. Comparing schemes under k failures.

The ingress predicate in is a disjunction of switch-and-port tests over all ingress locations. This �rst
model is embedded into a re�ned model bM(p, t , f) that integrates the failure model and declares all
necessary local variables that track the healthiness of individual ports:

bM(p, t , f) , var up1 1 in
. . .

var upd 1 in
M((f ; p), t)

Here d denotes the maximum degree of all nodes in the FatTree and AB FatTree topologies from
Figures 5 and 6, which we encode as programs fa�ree and abfa�ree. much like in Section 2.2.

6.3 Checking invariants
We can gain con�dence in the correctness of our implementation of F10 by verifying that it
maintains certain key invariants. As an example, recall our implementation of F103,5: when we
perform 5-hop rerouting, we use an extra bit (default) to notify the next hop aggregation switch to
forward the packet downwards instead of performing default forwarding. The next hop follows
this instruction and also sets default back to 1. By design, the packet can not be delivered to the
destination with default set to 0.

To verify this property, we check the following equivalence:

8t ,k : bM(F103,5, t, fk) ⌘ bM(F103,5, t, fk) ; default=1

We executed the check using our implementation for k 2 {0, 1, 2, 3, 4,1} and t 2 {fa�ree, abfa�ree}.
As discussed below, we actually failed to implement this feature correctly on our �rst attempt due
to a subtle bug—we neglected to initialize the default �ag to 1 at the ingress.

6.4 F10 routing with FatTree
We previously saw that the structure of FatTree doesn’t allow 3-hop rerouting on failures because
all subtrees are of the same type. This would mean that augmenting ECMP with 3-hop rerouting
should have no e�ect, i.e. 3-hop rerouting should never kick in and act as a no-op. To verify this,
we can check the following equivalence:

8k : bM(F100, fa�ree, fk) ⌘ bM(F103, fa�ree, fk)

Wehave used our implementation to check that this equivalence indeed holds fork 2 {0, 1, 2, 3, 4,1}.

We verified k-resilience using ProbNetKAT

An uninitialized flag caused all
packets to be dropped

Case Study: k-resilience

k = number of failures ✔ = 100% packet delivery

After fixing the bug...

Sophistication of Routing Scheme

Probabilistic Program Equivalence for NetKAT 21

k F100 F103 F103,5
0 3 3 3
1 7 3 3
2 7 3 3
3 7 7 3
4 7 7 7
1 7 7 7

Table 1. Evaluating k-resilience of F10.

k
compare

(F100, F103)
compare

(F103, F103,5)
compare

(F103,5, teleport)

0 ⌘ ⌘ ⌘
1 < ⌘ ⌘
2 < ⌘ ⌘
3 < < ⌘
4 < < <
1 < < <

Table 2. Comparing schemes under k failures.

The ingress predicate in is a disjunction of switch-and-port tests over all ingress locations. This �rst
model is embedded into a re�ned model bM(p, t , f) that integrates the failure model and declares all
necessary local variables that track the healthiness of individual ports:

bM(p, t , f) , var up1 1 in
. . .

var upd 1 in
M((f ; p), t)

Here d denotes the maximum degree of all nodes in the FatTree and AB FatTree topologies from
Figures 5 and 6, which we encode as programs fa�ree and abfa�ree. much like in Section 2.2.

6.3 Checking invariants
We can gain con�dence in the correctness of our implementation of F10 by verifying that it
maintains certain key invariants. As an example, recall our implementation of F103,5: when we
perform 5-hop rerouting, we use an extra bit (default) to notify the next hop aggregation switch to
forward the packet downwards instead of performing default forwarding. The next hop follows
this instruction and also sets default back to 1. By design, the packet can not be delivered to the
destination with default set to 0.

To verify this property, we check the following equivalence:

8t ,k : bM(F103,5, t, fk) ⌘ bM(F103,5, t, fk) ; default=1

We executed the check using our implementation for k 2 {0, 1, 2, 3, 4,1} and t 2 {fa�ree, abfa�ree}.
As discussed below, we actually failed to implement this feature correctly on our �rst attempt due
to a subtle bug—we neglected to initialize the default �ag to 1 at the ingress.

6.4 F10 routing with FatTree
We previously saw that the structure of FatTree doesn’t allow 3-hop rerouting on failures because
all subtrees are of the same type. This would mean that augmenting ECMP with 3-hop rerouting
should have no e�ect, i.e. 3-hop rerouting should never kick in and act as a no-op. To verify this,
we can check the following equivalence:

8k : bM(F100, fa�ree, fk) ⌘ bM(F103, fa�ree, fk)

Wehave used our implementation to check that this equivalence indeed holds fork 2 {0, 1, 2, 3, 4,1}.

Case Study: probability of delivery
22 S. Smolka, P. Kumar, N. Foster, J. Hsu, D. Kahn, D. Kozen, and A. Silva

1/128 1/64 1/32 1/16 1/8 1/4
Link failure probability

0.80

0.85

0.90

0.95

1.00

P
r[
de

liv
er

y]

AB FatTree, F10 no rerouting

AB FatTree, F10 3-hop rerouting

AB FatTree, F10 3+5-hop rerouting

FatTree, F10 3+5-hop rerouting

Fig. 8. Probability of delivery vs. link-failure probability. (k = 1).

6.5 Refinement
Recall that we implemented F10 in three stages. We started with a basic routing scheme (F100)
based on ECMP that provides resilience on the upward path, but no rerouting capabilities on
the downward paths. We then augmented this scheme by adding 3-hop rerouting to obtain F103,
which can route around certain failures in the aggregation layer. Finally, we added 5-hop rerouting
to address failure cases that 3-hop rerouting cannot handle, obtaining F103,5. Hence, we would
expect the probability of packet delivery to increase with each re�nement of our routing scheme.
Additionally, we expect all schemes to deliver packets and drop packets with some probability
under the unbounded failure model. These observations are summarized by the following ordering:

drop < bM(F100, t , f1) < bM(F103, t , f1) < bM(F103,5, t , f1) < teleport

where t = abfa�ree and teleport , sw 1. To our surprise, we were not able to verify this property
initially, as our implementation indicated that the ordering

bM(F103, t , f1) < bM(F103,5, t , f1)
was violated. We then added a capability to our implementation to obtain counterexamples, and
found that F103 performed better than F103,5 for packets � with � .default = 0. We were missing
the �rst line in our implementation of F103,5 (cf., Figure 7) that initializes the default bit to 1 at the
ingress, causing packets to be dropped! After �xing the bug, we were able to con�rm the expected
ordering.

6.6 k-resilience
We saw that there exists a strict ordering in terms of resilience for F100, F103 and F103,5 when an
unbounded number of failures can happen. Another interesting way of measuring resilience is to
count the minimum number of failures at which a scheme fails to guarantee 100% delivery. Using
ProbNetKAT, we can measure this resilience by setting k in fk to increasing values and checking
equivalence with teleportation. Table 1 shows the results based on our decision procedure for the
AB FatTree topology from Figure 6.

The naive scheme, F100, which does not perform any rerouting, drops packets when a failure
occurs on the downward path. Thus, it is 0-resilient. In the example topology, 3-hop rerouting

Dramatic improvement when using rerouting

We evaluated packet loss when link failures increase

Case Study: probability of delivery
22 S. Smolka, P. Kumar, N. Foster, J. Hsu, D. Kahn, D. Kozen, and A. Silva

1/128 1/64 1/32 1/16 1/8 1/4
Link failure probability

0.80

0.85

0.90

0.95

1.00

P
r[
de

liv
er

y]

AB FatTree, F10 no rerouting

AB FatTree, F10 3-hop rerouting

AB FatTree, F10 3+5-hop rerouting

FatTree, F10 3+5-hop rerouting

Fig. 8. Probability of delivery vs. link-failure probability. (k = 1).

6.5 Refinement
Recall that we implemented F10 in three stages. We started with a basic routing scheme (F100)
based on ECMP that provides resilience on the upward path, but no rerouting capabilities on
the downward paths. We then augmented this scheme by adding 3-hop rerouting to obtain F103,
which can route around certain failures in the aggregation layer. Finally, we added 5-hop rerouting
to address failure cases that 3-hop rerouting cannot handle, obtaining F103,5. Hence, we would
expect the probability of packet delivery to increase with each re�nement of our routing scheme.
Additionally, we expect all schemes to deliver packets and drop packets with some probability
under the unbounded failure model. These observations are summarized by the following ordering:

drop < bM(F100, t , f1) < bM(F103, t , f1) < bM(F103,5, t , f1) < teleport

where t = abfa�ree and teleport , sw 1. To our surprise, we were not able to verify this property
initially, as our implementation indicated that the ordering

bM(F103, t , f1) < bM(F103,5, t , f1)
was violated. We then added a capability to our implementation to obtain counterexamples, and
found that F103 performed better than F103,5 for packets � with � .default = 0. We were missing
the �rst line in our implementation of F103,5 (cf., Figure 7) that initializes the default bit to 1 at the
ingress, causing packets to be dropped! After �xing the bug, we were able to con�rm the expected
ordering.

6.6 k-resilience
We saw that there exists a strict ordering in terms of resilience for F100, F103 and F103,5 when an
unbounded number of failures can happen. Another interesting way of measuring resilience is to
count the minimum number of failures at which a scheme fails to guarantee 100% delivery. Using
ProbNetKAT, we can measure this resilience by setting k in fk to increasing values and checking
equivalence with teleportation. Table 1 shows the results based on our decision procedure for the
AB FatTree topology from Figure 6.

The naive scheme, F100, which does not perform any rerouting, drops packets when a failure
occurs on the downward path. Thus, it is 0-resilient. In the example topology, 3-hop rerouting

Dramatic improvement when using rerouting

Nearly perfect packet delivery
despite extreme failure model!

We evaluated packet loss when link failures increase

Case Study: expected hop count
The price of resilience: increased paths lengths

24 S. Smolka, P. Kumar, N. Foster, J. Hsu, D. Kahn, D. Kozen, and A. Silva

1/128 1/64 1/32 1/16 1/8 1/4
Link failure probability

3.6

3.8

4.0

4.2

4.4

4.6

4.8

E
[h

op
co

un
t
|d

el
iv

er
ed

]

AB FatTree, F10 no rerouting

AB FatTree, F10 3-hop rerouting

AB FatTree, F10 3+5-hop rerouting

FatTree, F10 3+5-hop rerouting

Fig. 10. Expected hop-count conditioned on delivery. (k = 1).

in throughput for higher hop counts. We �nd that F103,5 improves resilience for FatTree too, but
the impact on latency is signi�cantly higher as FatTree does not support 3-hop rerouting.

6.9 Expected latency
Figure 10 shows the expected hop-count of paths taken by packets conditioned on their delivery.
Both F103 and F103,5 deliver packets with high probability even at high failure probabilities, as we
saw in Figure 8. However, a higher probability of link-failure implies that it becomes more likely
for these schemes to invoke rerouting, which increases hop count. Hence, we see the increase in
expected hop-count as failure probability increases. F103,5 uses 5-hop rerouting to achieve more
resilience compared to F103, which performs only 3-hop rerouting, and this leads to slightly higher
expected hop-count for F103,5. We see that the increase is more signi�cant for FatTree in contrast
to AB FatTree because FatTree only supports 5-hop rerouting.
As the failure probability increases, the probability of delivery for packets that are routed via

the core layer decreases signi�cantly for F100 (recall Figure 8). Thus, the distribution of delivered
packets shifts towards those with direct 2-hop path via an aggregation switch (such as packets
from s2 to s1), and hence the expected hop-count decreases slightly.

6.10 Discussion
As this case study of resilient routing in datacenters shows, the stochastic matrix representation of
ProbNetKAT programs and accompanying decision procedure enable us to answer a wide variety of
questions about probabilistic networks completely automatically. These new capabilities represent
a sign�cant advance over current network veri�cation tools, which are based on deterministic
packet-forwarding models [9, 15, 17, 22].

7 DECIDING FULL PROBNETKAT: OBSTACLES AND CHALLENGES
As we have just seen, history-free ProbNetKAT can describe sophisticated network routing schemes
under various failure models, and program equivalence for the language is decidable. However, it
is less expressive than the original ProbNetKAT language, which includes an additional primitive
dup. Intuitively, this command duplicates a packet � 2 Pk and outputs the word �� 2 H, where
H = Pk⇤ is the set of non-empty, �nite sequences of packets. An element of H is called a packet

ABFatTree outperforms regular FatTree

Case Study: expected hop count
The price of resilience: increased paths lengths

24 S. Smolka, P. Kumar, N. Foster, J. Hsu, D. Kahn, D. Kozen, and A. Silva

1/128 1/64 1/32 1/16 1/8 1/4
Link failure probability

3.6

3.8

4.0

4.2

4.4

4.6

4.8

E
[h

op
co

un
t
|d

el
iv

er
ed

]

AB FatTree, F10 no rerouting

AB FatTree, F10 3-hop rerouting

AB FatTree, F10 3+5-hop rerouting

FatTree, F10 3+5-hop rerouting

Fig. 10. Expected hop-count conditioned on delivery. (k = 1).

in throughput for higher hop counts. We �nd that F103,5 improves resilience for FatTree too, but
the impact on latency is signi�cantly higher as FatTree does not support 3-hop rerouting.

6.9 Expected latency
Figure 10 shows the expected hop-count of paths taken by packets conditioned on their delivery.
Both F103 and F103,5 deliver packets with high probability even at high failure probabilities, as we
saw in Figure 8. However, a higher probability of link-failure implies that it becomes more likely
for these schemes to invoke rerouting, which increases hop count. Hence, we see the increase in
expected hop-count as failure probability increases. F103,5 uses 5-hop rerouting to achieve more
resilience compared to F103, which performs only 3-hop rerouting, and this leads to slightly higher
expected hop-count for F103,5. We see that the increase is more signi�cant for FatTree in contrast
to AB FatTree because FatTree only supports 5-hop rerouting.
As the failure probability increases, the probability of delivery for packets that are routed via

the core layer decreases signi�cantly for F100 (recall Figure 8). Thus, the distribution of delivered
packets shifts towards those with direct 2-hop path via an aggregation switch (such as packets
from s2 to s1), and hence the expected hop-count decreases slightly.

6.10 Discussion
As this case study of resilient routing in datacenters shows, the stochastic matrix representation of
ProbNetKAT programs and accompanying decision procedure enable us to answer a wide variety of
questions about probabilistic networks completely automatically. These new capabilities represent
a sign�cant advance over current network veri�cation tools, which are based on deterministic
packet-forwarding models [9, 15, 17, 22].

7 DECIDING FULL PROBNETKAT: OBSTACLES AND CHALLENGES
As we have just seen, history-free ProbNetKAT can describe sophisticated network routing schemes
under various failure models, and program equivalence for the language is decidable. However, it
is less expressive than the original ProbNetKAT language, which includes an additional primitive
dup. Intuitively, this command duplicates a packet � 2 Pk and outputs the word �� 2 H, where
H = Pk⇤ is the set of non-empty, �nite sequences of packets. An element of H is called a packet

Regular FatTree only
has long backup paths

ABFatTree outperforms regular FatTree

Wrapping Up

Conclusion

ProbNetKAT is the first probabilistic network
verification tool

Conclusion

Can verify reachability properties
even if network behavior is not deterministic

ProbNetKAT is the first probabilistic network
verification tool

Conclusion

Can verify reachability properties
even if network behavior is not deterministic

ProbNetKAT is the first probabilistic network
verification tool

Can reason about resilience
e.g., k-resilience, probability of delivery

Conclusion

Can verify reachability properties
even if network behavior is not deterministic

ProbNetKAT is the first probabilistic network
verification tool

Can reason about resilience
e.g., k-resilience, probability of delivery

Can reason about quantitative properties
e.g., expected path length under failure model

Future Work

Future Work

Scalable implementation
Current prototype does not scale beyond 100
switches

Future Work

Probabilistic Inference
Given observation of packet loss, what link
failure has most likely occurred?

Scalable implementation
Current prototype does not scale beyond 100
switches

Future Work

Probabilistic Inference
Given observation of packet loss, what link
failure has most likely occurred?

More expressive language
ProbNetKAT has no notion of queuing or time

Scalable implementation
Current prototype does not scale beyond 100
switches

Nate
Foster

Dexter
Kozen

Alexandra
Silva

Praveen
Kumar

Steffen
Smolka

Justin
Hsu

David
Kahn

