
Efficient Programming
Abstractions for SDN

Steffen Smolka

Networks are becoming programmable

Pattern Actions
dstport=22 Drop

srcip=10.0.0.0
/8

Forward	
1

* Forward	
2

Pattern Actions
dstport=22 Drop

srcip=10.0.0.0
/8

Forward	
1

* Forward	
2

Pattern Actions
dstport=22 Drop

srcip=10.0.0.0
/8

Forward	
1

* Forward	
2

rule tables

SDN
switches

open interface
(OpenFlow / P4)

machine
abstraction

Networks are becoming programmable

Pattern Actions
dstport=22 Drop

srcip=10.0.0.0
/8

Forward	
1

* Forward	
2

Pattern Actions
dstport=22 Drop

srcip=10.0.0.0
/8

Forward	
1

* Forward	
2

Pattern Actions
dstport=22 Drop

srcip=10.0.0.0
/8

Forward	
1

* Forward	
2

rule tables

SDN
switches

open interface
(OpenFlow / P4)

machine
abstraction

Fire-
wall ; Route

Compiler

high-level
program

This Talk

Language Design

Language Design

Network-wide
Abstractions

Rich Packet
Classification

Controller

Application Application

Modular
Composition

?
?

?

NetKAT

Model

{ switch = A,
 port = 3,
 ethSrc = 8:8:::::8:8,
 ethDst = 2:2:::::2:2,
 vLan = 8,
 ipSrc = 192.168.2.1,
 ipDst = 127.0.0.1,
 ...
}

Packets are records of values.
Programs are functions on packets.

NetKAT Language

pol ::=
 | false
 | true
 | field = val
 | field := val
 | pol1 + pol2
 | pol1 ; pol2
 | !pol
 | pol*

 | S⇾S'

NetKAT Language

pol ::=
 | false
 | true
 | field = val
 | field := val
 | pol1 + pol2
 | pol1 ; pol2
 | !pol
 | pol*

 | S⇾S'

Boolean Algebra | false
 | true

 | field = val

 | !pol

 | pol1 + pol2
 | pol1 ; pol2

NetKAT Language

pol ::=
 | false
 | true
 | field = val
 | field := val
 | pol1 + pol2
 | pol1 ; pol2
 | !pol
 | pol*

 | S⇾S'

Boolean Algebra

Kleene Algebra
"Regular Expressions"

+

 | false
 | true

 | pol1 + pol2
 | pol1 ; pol2

 | pol*

NetKAT Language

pol ::=
 | false
 | true
 | field = val
 | field := val
 | pol1 + pol2
 | pol1 ; pol2
 | !pol
 | pol*

 | S⇾S'

Boolean Algebra

Kleene Algebra
"Regular Expressions"

+

Packet Primitives
+

 | S⇾S'

 | field := val

NetKAT Language

pol ::=
 | false
 | true
 | field = val
 | field := val
 | pol1 + pol2
 | pol1 ; pol2
 | !pol
 | pol*

 | S⇾S'

Boolean Algebra

Kleene Algebra
"Regular Expressions"

+

Packet Primitives
+

 | S⇾S'

 | field := val `
if p then q else r ≜ p;q + !p;r

while p do q ≜ p;q*;!p

NetKAT Semantics
pol ::=
 | false
 | true
 | field = val
 | field := val
 | pol1 + pol2
 | pol1 ; pol2
 | !pol
 | pol*

 | S⇾S'

NetKAT Semantics
pol ::=
 | false
 | true
 | field = val
 | field := val
 | pol1 + pol2
 | pol1 ; pol2
 | !pol
 | pol*

 | S⇾S'

Local NetKAT: input-output behavior of switches

〚pol〛∈ Packet ➞ Packet Set

NetKAT Semantics
pol ::=
 | false
 | true
 | field = val
 | field := val
 | pol1 + pol2
 | pol1 ; pol2
 | !pol
 | pol*

 | S⇾S'

Local NetKAT: input-output behavior of switches

〚pol〛∈ Packet ➞ Packet Set

Global NetKAT: network-wide behavior

〚pol〛∈ History ➞ History Set

Example

1 5

2 6

3 4
A B

Local Program

polA polB

1 5

2 6

3 4
A B

Local Program

 port:=3 ???

1 5

2 6

3 4
A B

Local Program

port=1; tag:=1; port:=3
+

port=2; tag:=2; port:=3
???

1 5

2 6

3 4
A B

Local Program

Tedious for programmers… difficult to get right!

port=1; tag:=1; port:=3
+

port=2; tag:=2; port:=3

tag=1; port:=5
+

tag=2; port:=6

1 5

2 6

3 4
A B

Global Program

pol

1 5

2 6

3 4
A B

Global Program

Simple and elegant!

 port=1; A⇾B; port:=5
+

 port=2; A⇾B; port:=6

1 5

2 6

3 4
A B

Virtual Program

1 5

2 6

3 4
A B

Virtual Program

1 5

2 6

3 4
A B

2

1

6

5
virtual "big switch"

Virtual Program

Even simpler!

 port=1; port:=5
+

 port=2; port:=6

1 5

2 6

3 4
A B

2

1

6

5
virtual "big switch"

Virtual Program

Even simpler!

 port=1; port:=5
+

 port=2; port:=6

1 5

2 6

3 4
A B

2

1

6

5
virtual "big switch"

Virtual Program

Even simpler!

 port=1; port:=5
+

 port=2; port:=6

1 5

2 6

3 4
A B

2

1

6

5
virtual "big switch"

firewall ;

Virtual Program

Even simpler!

 port=1; port:=5
+

 port=2; port:=6

1 5

2 6

3 4
A B

2

1

6

5
virtual "big switch"

firewall ;

`
Can implement multiple arbitrary virtual networks

on top of single physical network

Compilation

Pattern Actions

dstpt=2 drop

srcpt=7 fwd 1

* fwd 2

Pattern Actions

dstpt=2 drop

srcpt=7 fwd 1

* fwd 2

Pattern Actions

dstpt=2 drop

srcpt=7 fwd 1

* fwd 2

Program

Compilation

Pattern Actions

dstpt=2 drop

srcpt=7 fwd 1

* fwd 2

Pattern Actions

dstpt=2 drop

srcpt=7 fwd 1

* fwd 2

Pattern Actions

dstpt=2 drop

srcpt=7 fwd 1

* fwd 2

Program

NetKAT Compiler

NetKAT Compiler Pipeline

123 local
policy

Local
Compiler

Pattern Actions

dstpt=2 drop
srcpt=7 fwd 1

* fwd 2

Pattern Actions

dstpt=2 drop
srcpt=7 fwd 1

* fwd 2

Pattern Actions

dstpt=2 drop
srcpt=7 fwd 1

* fwd 2

~ 100x faster 
than competitors

network-wide
behavior

global
policy

Global
Compiler

abstract
topologies

virtual
policy

Virtual
Compiler

Local Compilation

Pattern Actions

dstpt=2 drop

srcpt=7 fwd 1

* fwd 2

Pattern Actions

dstpt=2 drop

srcpt=7 fwd 1

* fwd 2

Pattern Actions

dstpt=2 drop

srcpt=7 fwd 1

* fwd 2

Local
Compiler

Global
Compiler

Virtual
Compiler

Input: local program

Output: collection of flow tables, one per switch

Challenges: efficiency and size of generated tables

Traditional Approach
let	route	= 
		if	ipDst	=	10.0.0.1	then		
				port	:=	1 
		else	if	ipDst	=	10.0.0.2	then		
				port	:=	2 
		else		
			port	:=	learn

let	monitor	=		
if	(tcpSrc	=	22	+	tcpDst	=	22)	then	
		port:=console	
else		
		false

+

Traditional Approach
let	route	= 
		if	ipDst	=	10.0.0.1	then		
				port	:=	1 
		else	if	ipDst	=	10.0.0.2	then		
				port	:=	2 
		else		
			port	:=	learn

let	monitor	=		
if	(tcpSrc	=	22	+	tcpDst	=	22)	then	
		port:=console	
else		
		false

+

Pattern Actions
src=10.0.0.1 Fwd	1
src=10.0.0.2 Fwd	2

* Controller

Pattern Actions
tcpSrc=22 Controller

rrtcpDst=22 Controller
rr* Drop

Traditional Approach
let	route	= 
		if	ipDst	=	10.0.0.1	then		
				port	:=	1 
		else	if	ipDst	=	10.0.0.2	then		
				port	:=	2 
		else		
			port	:=	learn

let	monitor	=		
if	(tcpSrc	=	22	+	tcpDst	=	22)	then	
		port:=console	
else		
		false

+

Pattern Actions
src=10.0.0.1 Fwd	1
src=10.0.0.2 Fwd	2

* Controller

+
Pattern Actions
tcpSrc=22 Controller

rrtcpDst=22 Controller
rr* Drop

Traditional Approach
let	route	= 
		if	ipDst	=	10.0.0.1	then		
				port	:=	1 
		else	if	ipDst	=	10.0.0.2	then		
				port	:=	2 
		else		
			port	:=	learn

let	monitor	=		
if	(tcpSrc	=	22	+	tcpDst	=	22)	then	
		port:=console	
else		
		false

+

Inefficient!

Pattern Actions
src=10.0.0.1 Fwd	1
src=10.0.0.2 Fwd	2

* Controller

+
Pattern Actions
tcpSrc=22 Controller

rrtcpDst=22 Controller
rr* Drop

Tables are a hardware abstraction,
not an efficient data structure!!

Our Approach
let	route	= 
		if	ipDst	=	10.0.0.1	then		
				port	:=	1 
		else	if	ipDst	=	10.0.0.2	then		
				port	:=	2 
		else		
			port	:=	learn

+
let	monitor	=		
if	(tcpSrc	=	22	+	tcpDst	=	22)	then	
		port:=console	
else		
		false

Our Approach
let	route	= 
		if	ipDst	=	10.0.0.1	then		
				port	:=	1 
		else	if	ipDst	=	10.0.0.2	then		
				port	:=	2 
		else		
			port	:=	learn

+
let	monitor	=		
if	(tcpSrc	=	22	+	tcpDst	=	22)	then	
		port:=console	
else		
		false

Our Approach
let	route	= 
		if	ipDst	=	10.0.0.1	then		
				port	:=	1 
		else	if	ipDst	=	10.0.0.2	then		
				port	:=	2 
		else		
			port	:=	learn

+

Efficient!

+

let	monitor	=		
if	(tcpSrc	=	22	+	tcpDst	=	22)	then	
		port:=console	
else		
		false

Our Approach
let	route	= 
		if	ipDst	=	10.0.0.1	then		
				port	:=	1 
		else	if	ipDst	=	10.0.0.2	then		
				port	:=	2 
		else		
			port	:=	learn

+

Efficient!

+

Pattern Actions

ipDst=10.0.0.1,	
tcpSrc=22

Forward	1,	
Controller

ipDst=10.0.0.1,	
tcpDst=22

Forward	1,	
Controller

… …Efficient!

let	monitor	=		
if	(tcpSrc	=	22	+	tcpDst	=	22)	then	
		port:=console	
else		
		false

Our Approach
let	route	= 
		if	ipDst	=	10.0.0.1	then		
				port	:=	1 
		else	if	ipDst	=	10.0.0.2	then		
				port	:=	2 
		else		
			port	:=	learn

+

Efficient!

+

Pattern Actions

ipDst=10.0.0.1,	
tcpSrc=22

Forward	1,	
Controller

ipDst=10.0.0.1,	
tcpDst=22

Forward	1,	
Controller

… …Efficient!

let	monitor	=		
if	(tcpSrc	=	22	+	tcpDst	=	22)	then	
		port:=console	
else		
		false

`

Key Data Structure:

Forwarding Decision Diagram

→ now widely adopted

Global Compilation

Pattern Actions

dstpt=2 drop

srcpt=7 fwd 1

* fwd 2

Pattern Actions

dstpt=2 drop

srcpt=7 fwd 1

* fwd 2

Pattern Actions

dstpt=2 drop

srcpt=7 fwd 1

* fwd 2

Local
Compiler

Global
Compiler

Virtual
Compiler

Input: NetKAT program (with links)

Output: equivalent local program (without links)

✔

Main Challenges

1. Adding Extra State

2. Avoiding Duplication

"Tagging"

(naive tagging is unsound!)

A B

A B

Our Solution
Global
Program

 Adding Extra State
= Translation to Automaton

NetKAT NFA

Our Solution
Global
Program

 Adding Extra State
= Translation to Automaton

NetKAT NFA

 Avoiding Duplication
= Determinization

NetKAT DFA

Our Solution
Global
Program

 Adding Extra State
= Translation to Automaton

NetKAT NFA

 Avoiding Duplication
= Determinization

NetKAT DFA

 Automaton Minimization
= Tag Elimination

Our Solution
Global
Program

 Adding Extra State
= Translation to Automaton

NetKAT NFA

 Avoiding Duplication
= Determinization

NetKAT DFA Local
Program

 Automaton Minimization
= Tag Elimination

NetKAT Automata [Foster et al, POPL '15]

Transition relation δ : Q →Packet → P(Q x Packet)

"Alphabet size": |Packet x Packet|

NetKAT Automata [Foster et al, POPL '15]

Transition relation δ : Q →Packet → P(Q x Packet)

Can represent δ symbolically using FDDs!

Automata construction:
Antimirov partial derivatives & Position Automata

"Alphabet size": |Packet x Packet|

Virtual Compilation

Pattern Actions

dstpt=2 drop

srcpt=7 fwd 1

* fwd 2

Pattern Actions

dstpt=2 drop

srcpt=7 fwd 1

* fwd 2

Pattern Actions

dstpt=2 drop

srcpt=7 fwd 1

* fwd 2

Local
Compiler

Global
Compiler

Virtual
Compiler

Input: program written against virtual topology

Output: global program that simulates virtual behavior

✔✔

Virtualization

virtual: v

physical: p

✔

Virtualization

virtual: v

physical: p

✗

Virtualization

virtual: v

physical: p

✔

Virtualization

virtual: v

physical: p

✔

Observation: can formulate execution of a virtual
program as a two-player game
Compiler: synthesizes physical program p that encodes
a winning strategy to all instances of that game

Evaluation

0

30

60

90

0 20 40 60
Pods

Ti
m

e
(s

ec
on

ds
)

(a) Routing on k-pod fat-trees.

0

25

50

75

100

0 10000 20000 30000 40000
Rules

Ti
m

e
(s

ec
on

ds
)

Single FDD
Switch Specialization

(b) Destination-based routing on topology zoo.

2

200

600

200 400 600 800 1000
Prefix Groups

Ti
m

e
(s

ec
on

ds
)

Group
FDD 100
FDD 200
FDD 300
SDX 100
SDX 200
SDX 300

(c) Time needed to compile SDX benchmarks.

Figure 8: Experimental results: compilation time.

location is already consistent:

(vsw, vpt)R(sw, pt)
(vsw, vpt, I)
(sw, pt, O)

�
!


(vsw, vpt, I)

(sw, Loop pt, I)

� F -LOOP-IN

(sw, pt, O) !⇤
p

(sw0, pt0, O)
(vsw, vpt)R(sw0, pt0)

(vsw, vpt, O)
(sw, Loop pt, I)

�
!


(vsw, vpt, O)
(sw0, pt0, O)

� F -LOOP-OUT

Note that the above rules force a packet located at physical location
(sw, pt, O) to leave through port pt eventually. Intuitively, once the
fabric has committed to emitting the packet through the port, it can
only delay but not withdraw that commitment.

Since in0 forces all packets to start at an ingress location, we
need not consider the whole graph of product locations but can
restrict our attention to nodes that are reachable from the ingress:

(sw, pt) 2 I (vsw, vpt)R(sw, pt)
(vsw, vpt, I)
(sw, pt, I)

�
2 V

ING

u 2 V u ! v

v 2 V
TRANS

In the resulting graph G = (V,E), every path represents a possible
trajectory a packet processed by q1 may take through the virtual
and physical topology.

Recall that player F loses the game if he is unable to restore
consistency. To find a winning strategy for F in G, we simply
remove all paths that can lead to such a fatal state for F .

v =


(vsw, vpt, d1)
(sw, pt, d2)

�
2 V

d1 6= d2 8u. v ! u) u is fatal
v is fatal

F -FATAL

v =


(vsw, vpt, d1)
(sw, pt, d2)

�
2 V

d1 = d2 9u. v ! u ^ u is fatal
v is fatal

V -FATAL

F -FATAL says that any state from which F is unable to move to a
non-fatal state is fatal. In particular, this includes states in which
F cannot move to any other state at all. V -FATAL says that any
state in which V could potentially move to a fatal state is fatal.
Intuitively, we define such states to be fatal since we want the
fabric to work for any virtual policy the programmer may choose
to write. All fatal states can be removed using a simple backwards
traversal of the graph starting from nodes without outgoing edges.

This process may remove ingress nodes if they turn out to be fatal.
This happens if and only if there exists no fabric that can always
restore consistency for arbitrary virtual programs. Of course, this
case can only arise if the physical topology is not bidirectional.

If all ingress nodes withstand pruning, the resulting graph en-
codes exactly the set of all winning strategies for F , i.e. the set of
all possible fabrics. A fabric is simply a subgraph of G that con-
tains the ingress, is closed under all possible moves by the virtual
program, and contains exactly one edge out of every state in which
F has to restore consistency. The F -edges must be labeled with
concrete paths through the physical topology, as there may exists
several paths implementing the necessary multi step transportation
from the source node to the to the target node.

In general, there can be many such subgraphs and it is possible
to select fabrics with different characteristics such as minimizing
hop counts, maximizing disjoint paths, or even ensuring fault tol-
erance. Our compiler implements several simple strategies. For ex-
ample, given a metric � on paths (such as Dijkstra’s algorithm), our
greedy strategy starts at the ingress and adds a node whenever it is
reachable through an edge e rooted at a node u already selected,
and e is (i) any player V edge or (ii) the player F edge with path ⇡
minimizing � among all edges and their paths rooted at u.

Once such a subgraph is selected, it is straightforward to trans-
late it into a NetKAT program that implements a valid fabric. Every
F -edge [l

v

, l
p

] ! [l
v

, l
p

] in the graph is encoded as a NetKAT term
that matches on the locations l

v

and l
p

, forwards along the corre-
sponding physical path from l

p

to l0
p

, and then resets the virtual lo-
cation to l

v

. Reseting the virtual location is semantically redundant
but will simplify eliminating the vsw and vpt fields. We then take
f
in

to be the union of all F -IN-edges, and f
out

to be the union of all
F -OUT-edges. NetKAT’s network-wide abstractions play a key role
in this construction, providing the building blocks for composing
multiple overlapping paths into a unified fabric.

Assembly. The final step in the virtual compiler assembles the
virtual program, topology, and fabric into a physical program that
can be passed to the global compiler. Formally, this step interposes
f
out

after each step of virtual processing using p, and f
in

after each
step of virtual processing using t, yielding a policy:

q2 , in

0 · (p · f
out

) · (t · f
in

· p · f
out

)⇤ · out
By construction of in0, f

out

, and f
in

, any match on the vsw or
vpt field in q2 is always preceded by a modification of the two
fields on the same physical switch. Therefore, all matches will be
erased by the global compiler even without global optimization,
and we can eliminate the fields before generating the flow tables.
Intuitively, the program counter inserted by the global compiler
when translating q2 is able to play double duty and also keep track
of virtual locations as well. Hence, we only need a single tag (e.g.,
VLAN) to compile virtual programs.

Local Compiler vs State of the Art

about 100x speedup

0

30

60

90

0 20 40 60
Pods

Ti
m

e
(s

ec
on

ds
)

(a) Routing on k-pod fat-trees.

0

25

50

75

100

0 10000 20000 30000 40000
Rules

Ti
m

e
(s

ec
on

ds
)

Single FDD
Switch Specialization

(b) Destination-based routing on topology zoo.

2

200

600

200 400 600 800 1000
Prefix Groups

Ti
m

e
(s

ec
on

ds
)

Group
FDD 100
FDD 200
FDD 300
SDX 100
SDX 200
SDX 300

(c) Time needed to compile SDX benchmarks.

Figure 8: Experimental results: compilation time.

location is already consistent:

(vsw, vpt)R(sw, pt)
(vsw, vpt, I)
(sw, pt, O)

�
!


(vsw, vpt, I)

(sw, Loop pt, I)

� F -LOOP-IN

(sw, pt, O) !⇤
p

(sw0, pt0, O)
(vsw, vpt)R(sw0, pt0)

(vsw, vpt, O)
(sw, Loop pt, I)

�
!


(vsw, vpt, O)
(sw0, pt0, O)

� F -LOOP-OUT

Note that the above rules force a packet located at physical location
(sw, pt, O) to leave through port pt eventually. Intuitively, once the
fabric has committed to emitting the packet through the port, it can
only delay but not withdraw that commitment.

Since in0 forces all packets to start at an ingress location, we
need not consider the whole graph of product locations but can
restrict our attention to nodes that are reachable from the ingress:

(sw, pt) 2 I (vsw, vpt)R(sw, pt)
(vsw, vpt, I)
(sw, pt, I)

�
2 V

ING

u 2 V u ! v

v 2 V
TRANS

In the resulting graph G = (V,E), every path represents a possible
trajectory a packet processed by q1 may take through the virtual
and physical topology.

Recall that player F loses the game if he is unable to restore
consistency. To find a winning strategy for F in G, we simply
remove all paths that can lead to such a fatal state for F .

v =


(vsw, vpt, d1)
(sw, pt, d2)

�
2 V

d1 6= d2 8u. v ! u) u is fatal
v is fatal

F -FATAL

v =


(vsw, vpt, d1)
(sw, pt, d2)

�
2 V

d1 = d2 9u. v ! u ^ u is fatal
v is fatal

V -FATAL

F -FATAL says that any state from which F is unable to move to a
non-fatal state is fatal. In particular, this includes states in which
F cannot move to any other state at all. V -FATAL says that any
state in which V could potentially move to a fatal state is fatal.
Intuitively, we define such states to be fatal since we want the
fabric to work for any virtual policy the programmer may choose
to write. All fatal states can be removed using a simple backwards
traversal of the graph starting from nodes without outgoing edges.

This process may remove ingress nodes if they turn out to be fatal.
This happens if and only if there exists no fabric that can always
restore consistency for arbitrary virtual programs. Of course, this
case can only arise if the physical topology is not bidirectional.

If all ingress nodes withstand pruning, the resulting graph en-
codes exactly the set of all winning strategies for F , i.e. the set of
all possible fabrics. A fabric is simply a subgraph of G that con-
tains the ingress, is closed under all possible moves by the virtual
program, and contains exactly one edge out of every state in which
F has to restore consistency. The F -edges must be labeled with
concrete paths through the physical topology, as there may exists
several paths implementing the necessary multi step transportation
from the source node to the to the target node.

In general, there can be many such subgraphs and it is possible
to select fabrics with different characteristics such as minimizing
hop counts, maximizing disjoint paths, or even ensuring fault tol-
erance. Our compiler implements several simple strategies. For ex-
ample, given a metric � on paths (such as Dijkstra’s algorithm), our
greedy strategy starts at the ingress and adds a node whenever it is
reachable through an edge e rooted at a node u already selected,
and e is (i) any player V edge or (ii) the player F edge with path ⇡
minimizing � among all edges and their paths rooted at u.

Once such a subgraph is selected, it is straightforward to trans-
late it into a NetKAT program that implements a valid fabric. Every
F -edge [l

v

, l
p

] ! [l
v

, l
p

] in the graph is encoded as a NetKAT term
that matches on the locations l

v

and l
p

, forwards along the corre-
sponding physical path from l

p

to l0
p

, and then resets the virtual lo-
cation to l

v

. Reseting the virtual location is semantically redundant
but will simplify eliminating the vsw and vpt fields. We then take
f
in

to be the union of all F -IN-edges, and f
out

to be the union of all
F -OUT-edges. NetKAT’s network-wide abstractions play a key role
in this construction, providing the building blocks for composing
multiple overlapping paths into a unified fabric.

Assembly. The final step in the virtual compiler assembles the
virtual program, topology, and fabric into a physical program that
can be passed to the global compiler. Formally, this step interposes
f
out

after each step of virtual processing using p, and f
in

after each
step of virtual processing using t, yielding a policy:

q2 , in

0 · (p · f
out

) · (t · f
in

· p · f
out

)⇤ · out
By construction of in0, f

out

, and f
in

, any match on the vsw or
vpt field in q2 is always preceded by a modification of the two
fields on the same physical switch. Therefore, all matches will be
erased by the global compiler even without global optimization,
and we can eliminate the fields before generating the flow tables.
Intuitively, the program counter inserted by the global compiler
when translating q2 is able to play double duty and also keep track
of virtual locations as well. Hence, we only need a single tag (e.g.,
VLAN) to compile virtual programs.

0

30

60

90

0 20 40 60
Pods

Ti
m

e
(s

ec
on

ds
)

(a) Routing on k-pod fat-trees.

0

25

50

75

100

0 10000 20000 30000 40000
Rules

Ti
m

e
(s

ec
on

ds
)

Single FDD
Switch Specialization

(b) Destination-based routing on topology zoo.

2

200

600

200 400 600 800 1000
Prefix Groups

Ti
m

e
(s

ec
on

ds
)

Group
FDD 100
FDD 200
FDD 300
SDX 100
SDX 200
SDX 300

(c) Time needed to compile SDX benchmarks.

Figure 8: Experimental results: compilation time.

location is already consistent:

(vsw, vpt)R(sw, pt)
(vsw, vpt, I)
(sw, pt, O)

�
!


(vsw, vpt, I)

(sw, Loop pt, I)

� F -LOOP-IN

(sw, pt, O) !⇤
p

(sw0, pt0, O)
(vsw, vpt)R(sw0, pt0)

(vsw, vpt, O)
(sw, Loop pt, I)

�
!


(vsw, vpt, O)
(sw0, pt0, O)

� F -LOOP-OUT

Note that the above rules force a packet located at physical location
(sw, pt, O) to leave through port pt eventually. Intuitively, once the
fabric has committed to emitting the packet through the port, it can
only delay but not withdraw that commitment.

Since in0 forces all packets to start at an ingress location, we
need not consider the whole graph of product locations but can
restrict our attention to nodes that are reachable from the ingress:

(sw, pt) 2 I (vsw, vpt)R(sw, pt)
(vsw, vpt, I)
(sw, pt, I)

�
2 V

ING

u 2 V u ! v

v 2 V
TRANS

In the resulting graph G = (V,E), every path represents a possible
trajectory a packet processed by q1 may take through the virtual
and physical topology.

Recall that player F loses the game if he is unable to restore
consistency. To find a winning strategy for F in G, we simply
remove all paths that can lead to such a fatal state for F .

v =


(vsw, vpt, d1)
(sw, pt, d2)

�
2 V

d1 6= d2 8u. v ! u) u is fatal
v is fatal

F -FATAL

v =


(vsw, vpt, d1)
(sw, pt, d2)

�
2 V

d1 = d2 9u. v ! u ^ u is fatal
v is fatal

V -FATAL

F -FATAL says that any state from which F is unable to move to a
non-fatal state is fatal. In particular, this includes states in which
F cannot move to any other state at all. V -FATAL says that any
state in which V could potentially move to a fatal state is fatal.
Intuitively, we define such states to be fatal since we want the
fabric to work for any virtual policy the programmer may choose
to write. All fatal states can be removed using a simple backwards
traversal of the graph starting from nodes without outgoing edges.

This process may remove ingress nodes if they turn out to be fatal.
This happens if and only if there exists no fabric that can always
restore consistency for arbitrary virtual programs. Of course, this
case can only arise if the physical topology is not bidirectional.

If all ingress nodes withstand pruning, the resulting graph en-
codes exactly the set of all winning strategies for F , i.e. the set of
all possible fabrics. A fabric is simply a subgraph of G that con-
tains the ingress, is closed under all possible moves by the virtual
program, and contains exactly one edge out of every state in which
F has to restore consistency. The F -edges must be labeled with
concrete paths through the physical topology, as there may exists
several paths implementing the necessary multi step transportation
from the source node to the to the target node.

In general, there can be many such subgraphs and it is possible
to select fabrics with different characteristics such as minimizing
hop counts, maximizing disjoint paths, or even ensuring fault tol-
erance. Our compiler implements several simple strategies. For ex-
ample, given a metric � on paths (such as Dijkstra’s algorithm), our
greedy strategy starts at the ingress and adds a node whenever it is
reachable through an edge e rooted at a node u already selected,
and e is (i) any player V edge or (ii) the player F edge with path ⇡
minimizing � among all edges and their paths rooted at u.

Once such a subgraph is selected, it is straightforward to trans-
late it into a NetKAT program that implements a valid fabric. Every
F -edge [l

v

, l
p

] ! [l
v

, l
p

] in the graph is encoded as a NetKAT term
that matches on the locations l

v

and l
p

, forwards along the corre-
sponding physical path from l

p

to l0
p

, and then resets the virtual lo-
cation to l

v

. Reseting the virtual location is semantically redundant
but will simplify eliminating the vsw and vpt fields. We then take
f
in

to be the union of all F -IN-edges, and f
out

to be the union of all
F -OUT-edges. NetKAT’s network-wide abstractions play a key role
in this construction, providing the building blocks for composing
multiple overlapping paths into a unified fabric.

Assembly. The final step in the virtual compiler assembles the
virtual program, topology, and fabric into a physical program that
can be passed to the global compiler. Formally, this step interposes
f
out

after each step of virtual processing using p, and f
in

after each
step of virtual processing using t, yielding a policy:

q2 , in

0 · (p · f
out

) · (t · f
in

· p · f
out

)⇤ · out
By construction of in0, f

out

, and f
in

, any match on the vsw or
vpt field in q2 is always preceded by a modification of the two
fields on the same physical switch. Therefore, all matches will be
erased by the global compiler even without global optimization,
and we can eliminate the fields before generating the flow tables.
Intuitively, the program counter inserted by the global compiler
when translating q2 is able to play double duty and also keep track
of virtual locations as well. Hence, we only need a single tag (e.g.,
VLAN) to compile virtual programs.

0

2

4

6

0.5 0.6 0.7 0.8 0.9 1.0
Compression Ratio

C
ou

nt

(a) Compressing Classbench ACLs.

0

20

40

60

0.9 1.2 1.5 1.8
Size Overhead

C
ou

nt

(b) Table size overhead for global policies

0

250

500

750

1000

0 20000 40000 60000
Rules

Ti
m

e
(s

ec
on

ds
)

(c) Compilation time for global policies

Figure 9: Experimental results: forwarding table compression and global compilation.

6. Compiler Evaluation
We now evaluate our compiler on a diverse set of real-world topolo-
gies and benchmarks. Our experiments stress the compiler in sev-
eral ways and highlight the effect of important optimizations to the
fundamental FDD-based algorithms.

Experimental setup. An SDN controller needs to generate new
configurations quickly when new hosts connect, when links fail,
when traffic must be re-routed, etc. In addition, an SDN controller
needs to generate reasonably small flow tables that can fit on a
switch. Small tables can also be updated faster than a large table,
thus table size affects update time too. Therefore, in all the follow-
ing experiments we measure flow-table compilation time and flow-
table size. We perform all experiments on 32-core, 2.6 GHz Intel
Xeon E5-2650 machines with 64GB RAM.1 We repeat all timing
experiments ten times and plot their standard error.

Fat trees. A fat-tree [2] is a modern data-center network design
that uses commodity switches to minimize cost. It provides sev-
eral redundant paths between hosts that can be used to maximum
available bandwidth, provide backup paths, and so on. A fat-tree is
organized into pods, where a k-pod fat-tree topology can support up
to k

3

4 hosts. A real-world data-center can have up to 48 pods [2].
Therefore, our compiler ought to be able to generate forwarding
policies for 48-pod fat trees relatively quickly.

Figure 8a shows how the time needed to generate all flow tables
varies with the number of pods in a fat-tree. 2 The graph shows that
we take approximately 30 seconds to produce tables for 48-pod
fat trees (i.e., 27,000 hosts) and less than 120 seconds to generate
policies for 60-pod fat trees (i.e., 54,000 hosts).

This experiment shows that the compiler can generate tables for
large data-centers. But, this is partly because the fat-tree forwarding
algorithm is topology-dependent and leverages symmetries to min-
imize the amount of forwarding rules needed. However, many real-
world topologies are not regular and require topology-independent
forwarding policies. In the next section, we demonstrate that our
compiler scales to these topologies too.

Topology Zoo. The Topology Zoo [14] is a dataset of a few hun-
dred real-world network topologies of varying size and structure.
For every topology in this dataset, we use destination-based rout-
ing to connect all nodes to each other. In destination-based routing,
each switch filters packets by their destination address and forwards
them along a spanning-tree rooted at the destination. Since each
switch must be able to forward to any destination, the total number
of rules must be O(n2) for an n-node network.

Figure 8b shows how the running time of the compiler varies
across the topology zoo benchmarks. The curves are not as smooth

1 Our compiler is single-threaded and doesn’t leverage multicore.
2 This benchmark uses the switch-specialization optimization, which we
describe in section 6.

as the curve for fat-trees, since the complexity of forwarding de-
pends on features of network topology. Since the topology zoo is
so diverse, this is a good suite to exercise the switch specialization
optimization that dramatically reduces compile time.

A direct implementation builds one FDD for the entire network
and uses it to generate flow tables for each switch. However, since
several FDD (and BDD) algorithms are fundamentally quadratic, it
helps to first specialize the policy for each switch and then generate
a small FDD for each switch in the network (switch specialization).
Building FDDs for several smaller policies is typically much faster
than building a single FDD for the entire network. As the graph
shows, this optimization has a dramatic effect on all but the smallest
topologies.

SDX. We have considered some very large forwarding policies,
but none of them leverage software-defined networking in any
interesting way. In this section, we report on our performance on
benchmarks from a recent SIGCOMM paper [12] that proposes a
new application of SDN.

An Internet exchange point (IXP) is a physical location where
networks from several ISPs connect to each other to exchange traf-
fic. Legal contracts between networks are often implemented by
routing policies at IXPs. However, today’s IXPs use baroque pro-
tocols the needlessly limit kinds of policies that can be imple-
mented. A Software-defined IXP (an “SDX” [12]) gives partici-
pants fine-grained control over packet-processing and peering us-
ing a high-level network programming language. The SDX proto-
type uses Pyretic [21] as its language and presents several examples
that demonstrate the power of an expressive network programming
language.

We built a simple translator from Pyretic to NetKAT and use it
to evaluate our compiler on SDXs own benchmarks. These bench-
marks simulate a large IXP where a few hundred peers apply poli-
cies to several hundred prefix groups. The dashed lines in figure 8c
reproduce a graph from the SDX paper, which shows how compila-
tion time varies with the number of prefix groups and the number of
participants in the SDX.3 The solid lines show that our compiler is
orders of magnitude faster. Pyretic takes over 10 minutes to compile
the largest benchmark, but our compiler only takes two seconds.

Although Pyretic is written in Python, which is a lot slower than
OCaml, the main problem is that Pyretic has a simple table-based
compiler that does not scale (Section 2). In fact, the authors of SDX
had to add several optimizations to get the graph depicted. Despite
these optimizations, our FDD-based approach is substantially faster.

The SDX paper also reports flow-table sizes for the same bench-
mark. At first, our compiler appeared to produce tables that were
twice as large as Pyretic. Naturally, we were unhappy with this re-
sult and investigated. Our investigation revealed a serious bug in the
Pyretic compiler. It would produce incorrect tables that were arti-

3 We get nearly the same numbers as the SDX paper on our hardware.

0

2

4

6

0.5 0.6 0.7 0.8 0.9 1.0
Compression Ratio

C
ou

nt

(a) Compressing Classbench ACLs.

0

20

40

60

0.9 1.2 1.5 1.8
Size Overhead

C
ou

nt

(b) Table size overhead for global programs.

0

250

500

750

1000

0 20000 40000 60000
Rules

T
im

e
(s

ec
on

ds
)

(c) Compilation time for global programs.

Figure 13: Experimental results: forwarding table compression and global compilation.

Figure 12b shows how the running time of the compiler varies
across the topology zoo benchmarks. The curves are not as smooth
as the curve for fat-trees, since the complexity of forwarding de-
pends on features of network topology. Since the topology zoo is
so diverse, this is a good suite to exercise the switch specialization
optimization that dramatically reduces compile time.

A direct implementation builds of the local compiler builds one
FDD for the entire network and uses it to generate flow tables for
each switch. However, since several FDD (and BDD) algorithms are
fundamentally quadratic, it helps to first specialize the program for
each switch and then generate a small FDD for each switch in the
network (switch specialization). Building FDDs for several smaller
programs is typically much faster than building a single FDD for
the entire network. As the graph shows, this optimization has a
dramatic effect on all but the smallest topologies.

SDX. Our experiments thus far have considered some quite large
forwarding programs, but none of them leverage software-defined
networking in any interesting way. In this section, we report on our
performance on benchmarks from a recent SIGCOMM paper [13]
that proposes a new application of SDN.

An Internet exchange point (IXP) is a physical location where
networks from several ISPs connect to each other to exchange traf-
fic. Legal contracts between networks are often implemented by
routing programs at IXPs. However, today’s IXPs use baroque pro-
tocols the needlessly limit the kinds of programs that can be im-
plemented. A Software-defined IXP (an “SDX” [13]) gives partici-
pants fine-grained control over packet-processing and peering us-
ing a high-level network programming language. The SDX proto-
type uses Pyretic [25] to encode policies and presents several ex-
amples that demonstrate the power of an expressive network pro-
gramming language.

We build a translator from Pyretic to NetKAT and use it to eval-
uate our compiler on SDXs own benchmarks. These benchmarks
simulate a large IXP where a few hundred peers apply programs
to several hundred prefix groups. The dashed lines in Figure 12c
reproduce a graph from the SDX paper, which shows how compila-
tion time varies with the number of prefix groups and the number of
participants in the SDX.5 The solid lines show that our compiler is
orders of magnitude faster. Pyretic takes over 10 minutes to compile
the largest benchmark, but our compiler only takes two seconds.

Although Pyretic is written in Python, which is a lot slower than
OCaml, the main problem is that Pyretic has a simple table-based
compiler that does not scale (Section 2). In fact, the authors of SDX

5 We get nearly the same numbers as the SDX paper on our hardware.

had to add several optimizations to get the graph depicted. Despite
these optimizations, our FDD-based approach is substantially faster.

The SDX paper also reports flow-table sizes for the same bench-
mark. At first, our compiler appeared to produce tables that were
twice as large as Pyretic. Naturally, we were unhappy with this re-
sult and investigated. Our investigation revealed a bug in the Pyretic
compiler, which would produce incorrect tables that were artifi-
cially small. The authors of SDX have confirmed this bug and it has
been fixed in later versions of Pyretic. We are actively working with
them to port SDX to NetKAT to help SDX scale further.

Classbench. Lastly, we compile ACLs generated using Class-
bench [32]. These are realistic firewall rules that showcase another
optimization: it is often possible to significantly compress tables by
combining and eliminating redundant rules.

We build an optimizer for the flow-table generation algorithm
in Figure 8. Recall that that we generate flow-tables by converting
every complete path in the FDD into a rule. Once a path has been
traversed, we can remove it from the FDD without harm. However,
naively removing a path may produce an FDD that is not reduced.
Our optimization is simple: we remove paths from the FDD as they
are turned into rules and ensure that the FDD is reduced at each
step. When the last path is turned into a rule, we are left with a triv-
ial FDD. This iterative procedure prevents several unnecessary rules
from being generated. It is possible to implement other canonical
optimizations. But, this optimization is unique because it leverages
properties of reduced FDDs. Figure 13a shows that this approach
can produce 30% fewer rules on average than a direct implemen-
tation of flow-table generation. We do not report running times for
the optimizer, but it is negligible in all our experiments.

Global compiler. The benchmarks discussed so far only use the
local compiler. In this section, we focus on the global compiler.
Since the global compiler introduces new abstractions, we can’t
apply it to existing benchmarks, such as SDX, which use local
programs. Instead, we need to build our own benchmark suite of
global programs. To do so, we build a generator that produces
global programs that describe paths between hosts. Again, an n-
node topology has O(n2) paths. We apply this generator to the
Topology Zoo, measuring compilation time and table size:

• Compilation time: since the global compiler leverages FDDs, we
can expect automaton generation to be fast. However, global
compilation involves other steps such as determinization and
localization and their effects on compilation time may matter.
Figure 13c shows how compilation time varies with the total
number of rules generated. This graph does grow faster than
local compilation time on the same benchmark (the red, dashed

(a) minimum total number of links (b) minimum number of hops (c) minimum distance

Figure 10: Three fabrics optimizing different metrics

ficially small. The authors of SDX have confirmed this bug and it
has been fixed in later versions of Pyretic. We are actively working
with them to port SDX to NetKAT to help SDX scale further.

Classbench. Finally, we compile ACLs generated by Class-
bench [27], which are realistic firewall rules that exercise another
optimization in our compiler. When ACL have overlapping and
shadowed rules, it is often possible to compress them combining
and eliminating rules.

We build an optimizer for the flow-table generation algorithm
in Figure 6. Recall that that we generate flow-tables by converting
every complete path in the FDD into a rule. Once a path has been
traversed, we can remove it from the FDD without harm. However,
naively removing a path may produce an FDD that is not reduced.
Our optimization is simple: we remove paths from the FDD as they
are turned into rules and ensure that the FDD is reduced at each step.
When the last path is turned into a rule, we are left with a trivial
FDD. This iterative procedure prevents several unnecessary rules
from being generated. It is possible to implement other canonical
optimizations. But, this optimization is unique because it leverages
properties of reduced FDDs.

Figure 9a shows that this approach can produce 30% fewer rules
than a direct implementation of flow-table generation. We do not
report running times for the optimizer, but it is negligible in all our
experiments.

Global compiler. The benchmarks we have discussed so far only
use the local compiler. In this section, we focus on the global com-
piler. Since the global compiler introduces a completely new ab-
straction, we can’t apply it to existing benchmarks, such as SDX,
since they specify local policies. Thus, the global compiler per-
forms no differently than the local compiler. Instead, we need to
build our own benchmark suite of global policies. To do so, we
build a policy generator that produces global policies that describe
paths between hosts. Therefore, an n-node topology has O(n2)
paths. We apply this global policy generator to the topology zoo,
which allows us to compare local and global routing policies.

There are two things to measure:

• Compilation time: since the global compiler leverages FDDs, we
can expect automaton generation to be fast. However, global
compilation involves other steps such as determinization and
localization and their effects on compilation time may matter.
Figure 9c shows how compilation time varies with the total
number of rules generated. This graph does grow faster than
local compilation time on the same benchmark. The switch-
specialization optimization, which dramatically reduces the size
of FDDs and hence compilation time, does not work on global
policies. Therefore, it makes most sense to compare this graph
to local compilation time with a single FDD.

• Table size: The global compiler has some optimizations to elim-
inate unnecessary states, which produces fewer rules. However,
it it does not fully minimize NetKAT automata thus it may pro-
duce more rules than equivalent local policies. Figure 9b shows
that on the topology zoo, global routing produces tables that are
no more than twice as large as local routing.

We find these results promising. We have spent a lot of time
engineering the local compiler to be very fast whereas the global
compiler is much more of a prototype and there is a lot of room for
improvement.

Virtualization case study. Finally, we present a small case study
that showcases the virtual compiler on a snapshot of the AT&T
backbone network circa 2007–2008. This network is part of the
Topology Zoo and shown in figure 10. We construct a “one big
switch” virtual network and use it to connect five nodes (high-
lighted in green) to each other—a trivial five-rule policy. To map
the virtual network to the physical network, we generate three dif-
ferent fabrics: (a) a fabric that minimizes the total number of links
used across the network, (b) a fabric that minimizes the number of
hops between hosts, and (c) a fabric that minimizes the physical
length of the path between hosts. In the figure, the links utilized by
each of these fabrics is highlighted in red.

The three fabrics give rise to three very different implementa-
tions of the same virtual policy. Note that the policy and the fab-
ric are completely independent of each other and can be updated
independently too. For example, the operator managing the physi-
cal network could change the fabric to implement a new SLA, e.g.
move from minimum-utilization to shortest-paths. This change re-
quires no update to the virtual policy; the network would witness
performance improvement for free. Similarly, the virtual network
operator could decide to implement a new firewall policy in the
virtual network or change the forwarding behavior. The old fabric
would work seamlessly with this new virtual program without in-
tervention by the physical network operator. Network virtualization
is a very powerful abstraction. In principle, our compiler can even
be applied repeatedly to virtualize virtual networks.

7. Related Work
A large body of work has explored the design of high-level lan-
guages for SDN programming [7, 15, 20, 21, 24, 25, 28]. Our work
is unique in its focus on the task of engineering efficient compilers
that scale up to large topologies and expressive programs.

An early paper by Monsanto et al. proposed the NetCore lan-
guage and presented an algorithm for compiling programs based on
forwarding tables [20]. Subsequent work by Guha et al. developed a
verified implementation of NetCore in the Coq proof assistant [11].
Anderson et al. developed NetKAT as an extension to NetCore and

0

2

4

6

0.5 0.6 0.7 0.8 0.9 1.0
Compression Ratio

C
ou

nt

(a) Compressing Classbench ACLs.

0

20

40

60

0.9 1.2 1.5 1.8
Size Overhead

C
ou

nt

(b) Table size overhead for global programs.

0

250

500

750

1000

0 20000 40000 60000
Rules

T
im

e
(s

ec
on

ds
)

(c) Compilation time for global programs.

Figure 13: Experimental results: forwarding table compression and global compilation.

Figure 12b shows how the running time of the compiler varies
across the topology zoo benchmarks. The curves are not as smooth
as the curve for fat-trees, since the complexity of forwarding de-
pends on features of network topology. Since the topology zoo is
so diverse, this is a good suite to exercise the switch specialization
optimization that dramatically reduces compile time.

A direct implementation builds of the local compiler builds one
FDD for the entire network and uses it to generate flow tables for
each switch. However, since several FDD (and BDD) algorithms are
fundamentally quadratic, it helps to first specialize the program for
each switch and then generate a small FDD for each switch in the
network (switch specialization). Building FDDs for several smaller
programs is typically much faster than building a single FDD for
the entire network. As the graph shows, this optimization has a
dramatic effect on all but the smallest topologies.

SDX. Our experiments thus far have considered some quite large
forwarding programs, but none of them leverage software-defined
networking in any interesting way. In this section, we report on our
performance on benchmarks from a recent SIGCOMM paper [13]
that proposes a new application of SDN.

An Internet exchange point (IXP) is a physical location where
networks from several ISPs connect to each other to exchange traf-
fic. Legal contracts between networks are often implemented by
routing programs at IXPs. However, today’s IXPs use baroque pro-
tocols the needlessly limit the kinds of programs that can be im-
plemented. A Software-defined IXP (an “SDX” [13]) gives partici-
pants fine-grained control over packet-processing and peering us-
ing a high-level network programming language. The SDX proto-
type uses Pyretic [25] to encode policies and presents several ex-
amples that demonstrate the power of an expressive network pro-
gramming language.

We build a translator from Pyretic to NetKAT and use it to eval-
uate our compiler on SDXs own benchmarks. These benchmarks
simulate a large IXP where a few hundred peers apply programs
to several hundred prefix groups. The dashed lines in Figure 12c
reproduce a graph from the SDX paper, which shows how compila-
tion time varies with the number of prefix groups and the number of
participants in the SDX.5 The solid lines show that our compiler is
orders of magnitude faster. Pyretic takes over 10 minutes to compile
the largest benchmark, but our compiler only takes two seconds.

Although Pyretic is written in Python, which is a lot slower than
OCaml, the main problem is that Pyretic has a simple table-based
compiler that does not scale (Section 2). In fact, the authors of SDX

5 We get nearly the same numbers as the SDX paper on our hardware.

had to add several optimizations to get the graph depicted. Despite
these optimizations, our FDD-based approach is substantially faster.

The SDX paper also reports flow-table sizes for the same bench-
mark. At first, our compiler appeared to produce tables that were
twice as large as Pyretic. Naturally, we were unhappy with this re-
sult and investigated. Our investigation revealed a bug in the Pyretic
compiler, which would produce incorrect tables that were artifi-
cially small. The authors of SDX have confirmed this bug and it has
been fixed in later versions of Pyretic. We are actively working with
them to port SDX to NetKAT to help SDX scale further.

Classbench. Lastly, we compile ACLs generated using Class-
bench [32]. These are realistic firewall rules that showcase another
optimization: it is often possible to significantly compress tables by
combining and eliminating redundant rules.

We build an optimizer for the flow-table generation algorithm
in Figure 8. Recall that that we generate flow-tables by converting
every complete path in the FDD into a rule. Once a path has been
traversed, we can remove it from the FDD without harm. However,
naively removing a path may produce an FDD that is not reduced.
Our optimization is simple: we remove paths from the FDD as they
are turned into rules and ensure that the FDD is reduced at each
step. When the last path is turned into a rule, we are left with a triv-
ial FDD. This iterative procedure prevents several unnecessary rules
from being generated. It is possible to implement other canonical
optimizations. But, this optimization is unique because it leverages
properties of reduced FDDs. Figure 13a shows that this approach
can produce 30% fewer rules on average than a direct implemen-
tation of flow-table generation. We do not report running times for
the optimizer, but it is negligible in all our experiments.

Global compiler. The benchmarks discussed so far only use the
local compiler. In this section, we focus on the global compiler.
Since the global compiler introduces new abstractions, we can’t
apply it to existing benchmarks, such as SDX, which use local
programs. Instead, we need to build our own benchmark suite of
global programs. To do so, we build a generator that produces
global programs that describe paths between hosts. Again, an n-
node topology has O(n2) paths. We apply this generator to the
Topology Zoo, measuring compilation time and table size:

• Compilation time: since the global compiler leverages FDDs, we
can expect automaton generation to be fast. However, global
compilation involves other steps such as determinization and
localization and their effects on compilation time may matter.
Figure 13c shows how compilation time varies with the total
number of rules generated. This graph does grow faster than
local compilation time on the same benchmark (the red, dashed

Performance Scalability

Optimization Optimization

Global vs Local
Overhead Case Study

Fast, Flexible, and Fully implemented in OCaml:
http://github.com/frenetic-lang/frenetic/

Go ahead and use it!
(others are using it already)

Conclusion

First complete compiler pipeline for NetKAT

Patter
n

Action
sdstpt=

2
drop

srcpt=
7

fwd 1
* fwd 2

Patter
n

Action
sdstpt=

2
drop

srcpt=
7

fwd 1
* fwd 2

Patter
n

Action
sdstpt=

2
drop

srcpt=
7

fwd 1
* fwd 2

Local
Compiler

Global
Compiler

Virtual
Compiler

PyreticSDX

