
Probabilistic Program Equivalence for NetKAT
Steffen Smolka1, David Kahn1, Praveen Kumar1, Nate Foster1, Dexter Kozen1, Alexandra Silva2

1Cornell University 2University College London

NetKAT is a formal language for programing, modeling, and reasoning
about the behavior of packet-switched networks.

Predicates (Boolean Algebra).
t,u ::= 0 | 1 | f=n | t + u | t ; u | ¬t

Programs (Kleene Algebra with Tests).
p,q ::= t | f←n | p + q | p ; q | p* | dup

Example. pt=1; ip←10.0.0.1; (pt←1 + pt←2)
"For all packets coming in at port 1, rewrite the IP address to
10.0.0.1 and forward the packet out of ports 1 and 2."

Many network properties can be naturally phrased as questions about
program equivalence including waypointing, reachability, isolation,
loop-freedom, etc. The language has a symbolic (worst-case PSPACE)
decision procedure.

Goal. Develop a decision procedure for ProbNetKAT—i.e. NetKAT
extended with a probabilistic choice operator p ⊕ᵣ q.

Applications. Randomized & resilient routing algorithms, link failures,
uncertainty about network model or inputs.

Motivation

Key Question: decide p ≡ q for probabilistic programs p and q
Key Result: decidable for history-free Probabilistic NetKAT

Programs denote Markov kernels over the uncountable space of
packet history sets (2H, 𝔅): ⟦p⟧ ∈ 2H → D(2H).

Histories h ∈ H = Pk⋅Pk* record trajectories of packets π ∈ Pk.
Continuous (atomless) distributions can be encoded.
Iteration p* is defined as sup in CPO (D(2H), ⊑) [Saheb-Djahromi].

Probabilistic NetKAT Semantics

1. Restrict to history-free fragment (large but finite space)
Syntax: remove dup (history-extension primitive).
Consider only packet (singleton-history) inputs a ∈ 2Pk.
Practical Motivation: sufficient for many properties
Theoretical Motivation: ingredient for full decision procedure (DP)

coalgebraic DP = derivatives + DP for "observations"

2. Reduce equivalence to checking equality of canonical form
"Big Step" Semantics: programs denote MCs over finite state space 2Pk

B⟦p⟧a,b = probability that p outputs b ∈ 2Pk on input a ∈ 2Pk
Theorem (Sound & Complete). ⟦p⟧ = ⟦q⟧ on 2Pk ⟺ B⟦p⟧ = B⟦q⟧

3. Compute canonical form using absorbing Markov chains
Challenge. How to compute B⟦p*⟧ := lim B⟦p(n)⟧?
"Small Step" Semantics: 1 step in MC S⟦p⟧ = 1 iteration of p*

States are of the form <program, input set, output accumulator>

Approach

Resilient routing algorithms try to delivery packets despite links failures.
Formally, they are functions from

• the packet's destination (dst)
• the port at which the packet entered the switch (pt)
• the list of available outgoing links (upl ∈ {0,1} for each link l)

to the outport through which the packet will be forwarded.

ProbNetKAT specification of desired end-to-end property:

"Packets get delivered to their destination."

ProbNetKAT model of resilient routing algorithms:

Checking Properties:

• Correctness:

• k-Resilience:

Case Study: Resilient Routing

1. Decision procedure for full language?
 Challenges: uncountable space, continuous distributions
 Have "language model" L⟦p⟧ ∈ D(2Pk⋅Pk*⋅Pk) and DC for "observations."
 Exploring derivatives and suitable automata model.

2. Other practical applications?
 Challenges: scalability of implementation, expressivity of language
 Add Bayesian inference to determine likely sources of failures?

Open Questions & Future Work

hp⇤, a, bi h1+ p; p⇤, a, bi hp; p⇤, a, b [ai

hp⇤, a0, b [ai

1 1

B[[p]]a,a0
B[[p]]a,a0

Observation. Output accumulator is monotonically increasing and
eventually saturates.
→ Collapsing saturated states modulo equivalent accumulators, yields
an absorbing MC.
→ Unique stationary distribution exists, can be given in closed form.

Theorem. B⟦p*⟧ = absorption probabilities for collapsed small-step MC.

Corollary. B⟦p⟧ is computable for all p.

Corollary. Program equivalence for history-free ProbNetKAT is decidable

Approach (continued)

teleport ,
X

d

dst=d; sw d

topology ,
X

`

h
if up`=1; sw=src sw(`); pt=src pt(`) then

sw dst sw(`); pt dst pt(`)

else drop
i

model , while ¬at destination do

initialize up bits; route; topology

modelno link failures ⌘ teleport?

modelat most k link failures ⌘ teleport?

