

Probabilistic Program Equivalence for NetKAT

Steffen Smolka¹, David Kahn¹, Praveen Kumar¹, Nate Foster¹, Dexter Kozen¹, Alexandra Silva² ¹Cornell University ²University College London

Key Question: decide p = q for probabilistic programs p and q Key Result: decidable for history-free Probabilistic NetKAT

Motivation

NetKAT is a formal language for programing, modeling, and reasoning about the behavior of packet-switched networks.

Predicates (Boolean Algebra). t,u ::= 0 | 1 | f=n | t + u | t ; u | ¬t

Programs (Kleene Algebra with Tests). p,q ::= t | f←n | p + q | p ; q | p* dup

Approach (continued)

Observation. Output accumulator is monotonically increasing and eventually saturates.

- → Collapsing saturated states modulo equivalent accumulators, yields an **absorbing** MC.
- \rightarrow Unique stationary distribution exists, can be given in closed form.

Theorem. $B[p^*] = absorption probabilities for collapsed small-step MC.$

Example. $pt=1; ip \leftarrow 10.0.0.1; (pt \leftarrow 1 + pt \leftarrow 2)$ "For all packets coming in at port 1, rewrite the IP address to 10.0.0.1 and forward the packet out of ports 1 and 2."

Many **network properties** can be naturally phrased as questions about program equivalence including waypointing, reachability, isolation, loop-freedom, etc. The language has a symbolic (worst-case PSPACE) decision procedure.

Goal. Develop a decision procedure for ProbNetKAT—i.e. NetKAT extended with a probabilistic choice operator $p \oplus_r q$.

Applications. Randomized & resilient routing algorithms, link failures, uncertainty about network model or inputs.

Probabilistic NetKAT Semantics

Programs denote Markov kernels over the uncountable space of packet history sets (2^H, \mathfrak{B}): $\llbracket p \rrbracket \in 2^{H} \rightarrow D(2^{H})$.

Histories $h \in H = Pk \cdot Pk^*$ record trajectories of packets $\pi \in Pk$.

Corollary. B[[p]] is computable for all p.

Corollary. Program equivalence for history-free ProbNetKAT is decidable

Case Study: Resilient Routing

Resilient routing algorithms try to delivery packets despite links failures.

Formally, they are functions from

- the packet's destination (dst)
- the port at which the packet entered the switch (pt)
- the list of available outgoing links $(up_1 \in \{0,1\})$ for each link 1) to the outport through which the packet will be forwarded.

ProbNetKAT specification of desired end-to-end property:

 $\mathsf{teleport} \triangleq \sum \mathsf{dst} = d; \mathsf{sw} \leftarrow d$ "Packets get delivered to their destination."

ProbNetKAT model of resilient routing algorithms: model \triangleq while \neg at_destination do

Continuous (atomless) distributions can be encoded. **Iteration** p^* is defined as sup in CPO (D(2^H), \subseteq) [Saheb-Djahromi].

Approach

1. Restrict to history-free fragment (large but finite space) Syntax: remove dup (history-extension primitive). Consider only packet (singleton-history) inputs $a \in 2^{Pk}$. **Practical Motivation:** sufficient for many properties **Theoretical Motivation:** ingredient for full decision procedure (DP) **coalgebraic DP =** derivatives + **DP for "observations"**

2. Reduce equivalence to checking equality of canonical form **"Big Step" Semantics:** programs denote MCs over finite state space 2^{Pk}

initialize_up_bits; route; topology

$$\begin{array}{l} \mathsf{topology} \triangleq \sum_{\ell} \left[\begin{split} \mathbf{if} \ \mathbf{up}_{\ell} = 1; \\ \mathbf{sw} = src_sw(\ell); \\ \mathbf{pt} = src_pt(\ell) \end{split} \right. \\ \left. \begin{array}{l} \mathsf{sw} \leftarrow dst_sw(\ell); \\ \mathbf{pt} \leftarrow dst_pt(\ell) \end{array} \right. \\ \left. \begin{array}{l} \mathsf{else \ drop} \\ \end{matrix} \right] \end{array}$$

Checking Properties:

- **Correctness:** model_{no_link_failures} \equiv teleport?
- **k-Resilience:** model_{at_most_k_link_failures} \equiv teleport?

B[[p]]_{a,b} = probability that p outputs $b \in 2^{Pk}$ on input $a \in 2^{Pk}$ **Theorem (Sound & Complete).** $[p] = [q] \text{ on } 2^{Pk} \iff B[p] = B[q]$

3. Compute canonical form using absorbing Markov chains Challenge. How to compute $B[[p^*]] := \lim B[[p^{(n)}]]$?

"Small Step" Semantics: 1 step in MC S[[p]] = 1 iteration of p*

States are of the form < program, input set, output accumulator >

Open Questions & Future Work

1. Decision procedure for full language?

Challenges: uncountable space, continuous distributions Have "language model" $L[p] \in D(2^{Pk \cdot Pk^* \cdot Pk})$ and DC for "observations." Exploring derivatives and suitable automata model.

2. Other practical applications?

Challenges: scalability of implementation, expressivity of language Add Bayesian inference to determine likely sources of failures?